• Title/Summary/Keyword: safe navigation system

Search Result 336, Processing Time 0.026 seconds

Strategic Identification of Unsafe Actions That Characterize Accidents on Ships

  • Rivai, Haryanti;Furusho, Masao
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.499-509
    • /
    • 2013
  • Seafarers are one of the main engines driving economic growth in the maritime sector. The International Maritime (IMO) Organization estimated that there were approximately 1.5 million seafarers around the world engaged in international trade in 2012. Data have shown that human casualties in maritime accidents around Japan have shown an increasing trend over the last ten years. One cause is human error, which is inseparable from the human element that influences mariner's decisions and actions. The Personal Identification (PIN) Safe method is one way to systematically identify substandard and unsafe actions by considering the error taxonomies associated with various scenarios for a maritime system. The results are based on analysis of the role of the human element in commonly reported unsafe actions when interacting with equipment and other systems. Furthermore, patterns of influencing shaping factors were observed on the basis of data processing; the aim of this study was to promote safety culture and provide an opportunity to improve safety at sea.

Development of an Autonomous Mobile Robot with Functions of Speech Recognition and Collision Avoidance

  • Park, Min-Gyu;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.475-475
    • /
    • 2000
  • This paper describes the construction of an autonomous mobile robot with functions of collision avoidance and speech recognition that is used for teaching path of the robot. The human voice as a teaching method provides more convenient user-interface to mobile robot. For safe navigation, the autonomous mobile robot needs abilities to recognize surrounding environment and avoid collision. We use u1trasonic sensors to obtain the distance from the mobile robot to the various obstacles. By navigation algorithm, the robot forecasts the possibility of collision with obstacles and modifies a path if it detects dangerous obstacles. For these functions, the robot system is composed of four separated control modules, which are a speech recognition module, a servo motor control module, an ultrasonic sensor module, and a main control module. These modules are integrated by CAN(controller area network) in order to provide real-time communication.

  • PDF

A Study of Eliminating NNSS Speed Error by Use of Deviation of NNSS Position Error (NNSS 선위오차의 편차를 이용한 속도오차소법에 관한 연구)

  • 양창진
    • Journal of the Korean Institute of Navigation
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 1980
  • As the NNSS system calculates ship's position by the doppler shift of the NNSS radio waves caused by the change of the distance between Transit Satellite and the ship, ship's speed error inevitably results in the position error, and moreover this kind of erroris most dominant compared with other errors especially in high speed ships and airplanes. Most NNSS receivers now in use have adoptedsuccessive short doppler counts as positioning data and by investigating the dispersion of serval successive positions calculated and by neglecting the mean position having dispersion of over certain threshold level, more accurate adn safe position is to be achieved. This paper proposes the method of finding ship's true speed by selecting a speed having least position dispersion for given successive doppler counts. And by computer simulation it was verified that the method proposed here is reasonable in finding the ship's desired correct speed together with the correct ship's position.

  • PDF

Development of an Autonomous Mobile Robot with the Function of Teaching a Moving Path by Speech and Avoiding a Collision (음성에 의한 경로교시 기능과 충돌회피 기능을 갖춘 자율이동로봇의 개발)

  • Park, Min-Gyu;Lee, Min-Cheol;Lee, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.189-197
    • /
    • 2000
  • This paper addresses that the autonomous mobile robot with the function of teaching a moving path by speech and avoiding a collision is developed. The use of human speech as the teaching method provides more convenient user-interface for a mobile robot. In speech recognition system a speech recognition algorithm using neural is proposed to recognize Korean syllable. For the safe navigation the autonomous mobile robot needs abilities to recognize a surrounding environment and to avoid collision with obstacles. To obtain the distance from the mobile robot to the various obstacles in surrounding environment ultrasonic sensors is used. By the navigation algorithm the robot forecasts the collision possibility with obstacles and modifies a moving path if it detects a dangerous obstacle.

  • PDF

Analysis of Berthing Velocity of Ship and Application to Safe Pilotage (선박접안속도 분석과 안전도선에의 활용)

  • Ik-Soon Cho;Eun-Ji Kang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.149-150
    • /
    • 2022
  • External forces acting on the mooring facilities include wave, wind, current, and ship's kinetic energy. In particular, the ship's kinetic energy is changing as the ship become larger, and larger carrying capacity. It was intended to analyze the berthing velocity measurement data at on tanker terminals equipped with a DAS (Docking Aid System) through statistical means and algorithms and use it as basic data for safer and more efficient pier design and pilotage.

  • PDF

Research on Security System for Safe Communication in Maritime Environment (해상환경에서 안전한 통신을 위한 보안체계 연구)

  • Seoung-Pyo Hong;Hoon-Jae Lee;Young-Sil Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.21-27
    • /
    • 2023
  • As a means of helping ships navigate safely, navigational aids in operation in the maritime envirionment require periodic management, and due to the nature of the environment, it is difficult to visually check the exact state. As a result, the smart navigation aid system, which improves route safety and operational efficiency, utillizes expertise including sensors, communications, and information technology, unlike general route markings. The communication environment of the smart navigation aid system, which aims to ensure the safety of the navigators operating the ship and the safety of the ship, uses a wireless communication network in accordance with the marine environment. The ship collects the information necessary for the maritime environment on the land and operates. In this process, there is a need to consider the wireless communication security guideline. Basically, based on IHO S-100 a standard for facilitating data exchange and SECOM, which provides an interface for safe communication. This paper research a security system for safe communication in a maritime environment. The security system for the basic interface based on the document was presented, and there were some vulnerabillties to data exchange due to the wireless communication characteristics of the maritime environment, and the user authetication part was added considering the vulnerability that unauthorized users can access the service.

Fundamental Research for Video-Integrated Collision Prediction and Fall Detection System to Support Navigation Safety of Vessels

  • Kim, Bae-Sung;Woo, Yun-Tae;Yu, Yung-Ho;Hwang, Hun-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.91-97
    • /
    • 2021
  • Marine accidents caused by ships have brought about economic and social losses as well as human casualties. Most of these accidents are caused by small and medium-sized ships and are due to their poor conditions and insufficient equipment compared with larger vessels. Measures are quickly needed to improve the conditions. This paper discusses a video-integrated collision prediction and fall detection system to support the safe navigation of small- and medium-sized ships. The system predicts the collision of ships and detects falls by crew members using the CCTV, displays the analyzed integrated information using automatic identification system (AIS) messages, and provides alerts for the risks identified. The design consists of an object recognition algorithm, interface module, integrated display module, collision prediction and fall detection module, and an alarm management module. For the basic research, we implemented a deep learning algorithm to recognize the ship and crew from images, and an interface module to manage messages from AIS. To verify the implemented algorithm, we conducted tests using 120 images. Object recognition performance is calculated as mAP by comparing the pre-defined object with the object recognized through the algorithms. As results, the object recognition performance of the ship and the crew were approximately 50.44 mAP and 46.76 mAP each. The interface module showed that messages from the installed AIS were accurately converted according to the international standard. Therefore, we implemented an object recognition algorithm and interface module in the designed collision prediction and fall detection system and validated their usability with testing.

Development of a Collision Risk Assessment System for Optimum Safe Route (최적안전항로를 위한 충돌위험도 평가시스템의 개발)

  • Jeon, Ho-Kun;Jung, Yun-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.670-678
    • /
    • 2018
  • In coastal waters where the traffic volume of the ship is high, there is a high possibility of a collision accident because complicated encounter situations frequently occurs between ships. To reduce the collision accidents at sea, a quantitative collision risk assessment is required in addition to the navigator's compliance with COLREG. In this study, a new collision risk assessment system was developed to evaluate the collision risk on ship's planned sailing routes. The appropriate collision risk assessment method was proposed on the basis of reviewing existing collision risk assessment models. The system was developed using MATLAB and it consists of three parts: Map, Bumper and Assessment. The developed system was applied to the test sea area with simple computational conditions for testing and to actual sea areas with real computational conditions for validation. The results show the length of own ship, ship's sailing time and sailing routes affect collision risks. The developed system is expected to be helpful for navigators to choose the optimum safe route before sailing.

Development of e-navigation shipboard technical architecture (e-navigation 선상시스템을 위한 기술적 아키텍처 개발)

  • Shim, Woo-Seong;Kim, Sun-Young;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • The e-navigation has been being developed in IMO is a sort of strategy to provide user-oriented services for safe navigation and environmental protection based on the architecture and its related services complying with the user needs. At NAV $57^{th}$ meeting in 2011, the overarching e-navigation architecture was approved which represent overall relationship only between onboard and ashore elements, so more detail technical architecture for each element should be developed for implementation in view of services and systems. Considering the continuous and iterative verification of e-navigation development process required by IMO, the relationship and traceability should be took in consideration between the outcome of e-navigation process and the element of the architecture. In this paper, we have surveyed literarily the user needs, result of gap analysis and practical solutions to address them and defined the architecture elements and their relationship considering the three kinds of views of DoDAF(Architecture Framework) of US department of Defence, in result, proposed the e-navigation shipboard technical architecture.

Development of Cloud-based VTS Integration Platform for IVEF Service Implementation (IVEF 서비스 구현을 위한 클라우드 기반 VTS 통합 플랫폼 개발)

  • Yunja Yoo;Dae-Won Kim;Chae-Uk Song;Jung-Jin Lee;Sang-Gil Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.893-901
    • /
    • 2023
  • The International Association Marine Aids to Navigation and Lighthouse Authorities (IALA) proposed guidelines for VTS manual operation in 2016 for safe and efficient operation of ship. The Korea Coast Guard (KCG) established and operated 19 VTS centers in ports and coastal waters across the country by 2022 based on the IALA VTS manual and VTS operator's education and training guidelines. In addition, IALA proposed the Inter-VTS Exchange Format (IVEF) Service recommendation (V-145), a standard for data exchange between VTS, in 2011 for efficient e-Navigation system services and safe and efficient VTS service support by VTS authorities. The IVEF service in a common framework for ship information exchange, and it presents seven basic IVEF service (BISs) models. VTS service providers can provide safer and more efficient VTS services by sharing VTS information on joint area using IVEF standards. Based on the BIS data, interaction, and interfacing models, this paper introduced the development of the cloud-based VTS integration services performed by the KCG and the results of the VTS integration platform test-bed for IVEF service implementation. In addition, the results of establishing a cloud VTS integrated platform test-bed for the implementation of IVEF service and implementing the main functions of IVEF service were presented.