• Title/Summary/Keyword: safe design stress

Search Result 202, Processing Time 0.029 seconds

A Study on Safety Design of Auxiliary tank in a high-pressure air compressor (고압공기압축기의 보조탱크 안전설계에 관한 연구)

  • 강동명;오진수;이장규;우창기
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.31-36
    • /
    • 1997
  • Strength test using strain rosette gage have been conducted to investigate safety of an auxiliary tank in a high-pressure air compressor. Thickness of auxiliary tanks in 6063-T5 aluminum at toy are 9mm and 17mm. The result of strength test make a comparison the design in strength of materials by nominal stress and the design in fracture mechanics with consideration of crack size. Summarizing the result: Comparing with the safe working pressure of the strength test and that of the design method in strength of materials by nominal stress with the experimental values, it makes difference 11% and 39% for 9mm and 17mm thickness of auxiliary tanks, respectively, and that of the design method by fracture mechanics, it makes difference 4% and 5% for them, respectively. It is confirmed that the design by fracture mechanics is more economical and safe design than the design in strength of materials by nominal stress.

  • PDF

Optimum Design of the CT Type Plate with Varing Thickness (CT형 변후보강재의 최적 설계)

  • 석창성;최용식
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.1
    • /
    • pp.5-13
    • /
    • 1991
  • Fail-safe design of machine elements or structural members is very aim of the whole mankind. Fracture occurs generally from cracks that exist originally or produced from flaws. The most important job we have to do is to make stopping or decreasing the crack growth rate. For fail-safe design variable thickness plates have been used as structural members in practical engineering services. In this paper, optimum design of CT type plate with varlng thickness is studied with the theoritical analysis. The theoritical analysis was based on the stress concentration and nominal stress analysis. From the study, the optimum design curve was determined for use of designing of such structures using the computer analysis program of optimum design.

  • PDF

A Study on the Structural Safety Analysis for Vinyl House at Snow Load (비닐하우스의 적설하중 구조안전성 검토에 관한 연구)

  • Paik, Shinwon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.34-39
    • /
    • 2019
  • Vinyl house consists of main rafter, lateral member, clamps and polyethylene film. Many vinyl houses are used in the countryside to grow vegetables. These vinyl houses have occasionally been collapsed due to heavy snowfall in winter. Many farmers get a lot of economical damages, if vinyl houses are collapsed. So it is most important to built a safe vinyl house that can withstand heavy snowfall. In this study, a structural analysis was performed on three types of vinyl houses(07-single-01, 10-single-04, 12-single-01). In addition, the structural analysis of the three types of vinyl houses provided axial forces, flexural moment, and combined stress. For these three types of vinyl houses, structural safety was reviewed by obtaining the combined stress ratio by the strength design method. This structural review showed that the specifications for the vinyl house proposed in the design are not safe. Especially, the result of increasing the design snow load by 15 percent and 30 percent showed that the vinyl house structure constructed as a standard for vinyl house was a more dangerous structure. Therefore, it is necessary to revise regulations such as increasing the thickness of rafters or widening the gap in order to make vinyl houses structurally safe for heavy snowfall in the future, and to devise diverse methods to make vinyl houses that are structurally safe.

Stress Distributions at the Dissimilar Metal Weld of Safety Injection Nozzles According to Safe-end Length and SMW Thickness (안전단 길이 및 동종금속용접부 두께 변화에 따른 안전주입노즐 이종금속용접부의 응력분포)

  • Kim, Tae-Jin;Jeong, Woo-Chul;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.979-984
    • /
    • 2015
  • In the present paper, we evaluate the effects of the safe-end length and thickness of the similar metal weld (SMW) of safety injection nozzles on stress distributions at the dissimilar metal weld (DMW). For this evaluation, we carry out detailed 2-D axisymmetric finite element analyses by considering four different values of the safe-end length and four different values of the thickness of SMW. Based on the results obtained, we found that the SMW thickness affects the axial stresses at the center of the DMW for the shorter safe-end length; on the other hand, it does not affect the hoop stresses. In terms of the safe-end length, the values of the axial and hoop stresses at the inner surface of the DMW center increase as the safe-end length increases. In particular, for the cases considered in the present study, the stress distributions at the DMW center can be categorized according to certain values of safe-end length.

A Study on the Space Organization and Facility Equipment of Medical Laboratory - focusing on the USA, UK and Germany - (병원 진단검사의학부의 공간구조와 설비기준에 대한 조사 - 미국, 영국, 독일을 중심으로 -)

  • Kim, Youngaee
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.22 no.3
    • /
    • pp.7-15
    • /
    • 2016
  • Purpose: As medicare services have gotten spreaded, clinical laboratory has been dominant position. So, it has been acted for quality control and clinical pathology accreditation. But there has been quite deficient information to evaluate working space and technical standards of medical laboratory for accreditation. This study goals to figure out accreditation standard and design guideline for clinical laboratory, and to give safe and efficient design information. Methods: This study has been searched by literature for accreditation standards and design guidelines of clinical pathology in USA, UK, and Germany. Results: Three countries have accredited based on working lab space, staff space, storage space, patient space and health and safety equipment. Design guidelines of three countries commonly have focused on worktable layout, worktable distance and module, and specific laboratory biosafety level. And USA guidelines stress on the architectural design such as design process and passage distance for escape, UK stress on the efficiency as functional work flow and construction cost, lastly Germany design guidelines stress on the operator's safety distance and workstation. Three countries have not only accreditation standards but also design guidelines for more specific quality management, separating from accrediting institute. Implications: In korea, it has been needed to make clinical laboratory design guideline for the safe and efficient environment and reliable and competitive medical service.

A Study on the Design against Metal Fatigue (파로설계에 관한 소고)

  • Lee, Sun-Bok
    • 한국기계연구소 소보
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 1981
  • Fatigue, the birth and growth of cracks in metal parts subjected to repeated loading, has been a problem plaguing engineers since the Industrial Revolution and the advent of rotating or reciprocating machinery. Designing against metal fatigue was studied briefly in several aspects. Examples of fatigue failures were shown. Fatigue was classified by loading: uniaxial Fatigue, multiaxial fatigue, cumulative fatigue da¬mage. Fatigue design criteria were discussed: Infinite-Life Design, Safe-Life Design, Fail-Safe Design, and Damage Tolerant Design. Mitigation of notch effects by design, improvement of fatigue strength of metal parts by residual stress and surface finishing were discussed. Relative fatigue beha¬vior was studied under various environmantal conditions. Especially the effects of corrosion, temperature, fretting, and irradiation were covered.

  • PDF

A Study on Stress Analysis for Design of Composites Shaft on Small Ship by Filament Winding Process (필라멘트 와인딩 공법에 의한 소형 선박용 복합재료 축 설계를 위한 응력해석에 관한 연구)

  • 배창원;임철문;왕지석;김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.617-622
    • /
    • 2001
  • The purpose of this study is to design and the analyze the stress of composited shaft which is wound by filament winding method. The composites shaft has high strength and reduction in weight compared to metal shaft. The classical laminate plate theory(CLT) was used fro analysis the stress, and for structure design. In order to replace metal shaft by composites shaft, the diameter of shaft was determined to $\phi$ 40. The ration of diameter was determined to 0.4 for torsional moment with CLT. In this result of analyzing the stress, composites shaft was safe $30^{\circ}~60^{\circ}$C of winding angle, and was fractured on $90^{\circ}$.

  • PDF

Study on Structural Durability Analysis at Bicycle Saddle (자전거 안장에서의 구조적 내구성 해석에 관한 연구)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.104-112
    • /
    • 2013
  • This study investigates the structural analysis result with vibration and fatigue on 3 kinds of bicycle saddle models. When the static load applies on the upper plane of model, maximum stress becomes within the allowable stress in case of model 1. As the value of Stress or deformation becomes lower on the order of model types 1, 2 and 3, these models become more stabilized or safer at durability in this order. On the vibration analysis, model type 1 has the maximum stress or deformation more than 5 times by comparing with model type 1 or 2. Model type 1 becomes most excellent on vibration durability. As maximum displacement due to vibration happens in case of model type 3, it becomes unstabilized. But the stresses of model types 1, 2 and 3 become within the allowable stress and these models are considered to be safe. At the status of the severest fatigue load, model type 3 becomes safer than model type 1 or 2. This study result is applied with the design of safe bicycle saddle and it can be useful to improve the durability by predicting prevention against the deformation due to its vibration and fatigue.

고속 연접봉의 응력 변동

  • 김재호;신영재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.404-412
    • /
    • 1991
  • In the design of high speed machinery, designers must consider the problem of possible structural failure due to excessive dynamically varying stresses, which are induced by the varying external loads and internal inertia forces, in the links of the mechanism. A study of the dynamically induced stresses would indicate what values of the minimum permissible fatigue strength should be for safe mechanism operation. This paper investigates the nature of the stress fluctuation in high speed mechanism on the basis of the effects of both the loads and the friction. The latter is apt to be neglected in the usual analysis in spite of the fact that it is always generated in the operating machinery. The analysis is performed on the coupler of the slider-crank mechanism for illustrative purposes and the results are expressed in a non-dimensional form for design applications.

Study on Durability by Vibration and Fatigue of the Helicopter (헬기의 진동과 피로에 대한 내구성 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.63-69
    • /
    • 2011
  • This study analyzes stress, fatigue and vibration on main rotor and body of helicopter. The maximum stress is shown on adjoint part between body and main rotor at the lower position of main rotor. As the maximum displacement amplitude is happened at 4000Hz, there is no resonance and the state of helicopter becomes safe at hovering without the abnormal air current and the disabled rotor. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample History' with the average stress of 0MPa to $-10^5MPa$ and the amplitude stress of 0MPa to $8.539{\times}10^5MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study by using the analysis of vibration and fatigue can be effectively utilized for safe and durable design of helicopter.