• Title/Summary/Keyword: safe agricultural car

Search Result 3, Processing Time 0.023 seconds

A Study on Structural Analysis for Improving Driving Performance of Agricultural Electric Car (농업용 전기운반차의 주행성능 향상을 위한 구조해석에 관한 연구)

  • Jo, Jae-Hyun;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.556-561
    • /
    • 2020
  • The aging and declining agricultural population in the modern society requires improvement of the agricultural environment and is one of the representative problems. And since most of the work systems always require a transport work, the ratio of labor consumed in the transport work is very high. Accordingly, many types of transport vehicles are being developed and sold, and in the early days, most of them are powered transport vehicles using fossil fuels. However, it is paying attention to next-generation eco-friendly energy such as hydrogen, fuel cells, solar power, and bio due to the strengthening of international environmental regulations such as global warming and the Convention on Climate Change and the depletion of fossil fuels. Therefore, in this study, the ultimate goal is to develop an eco-friendly, easy-to-operate, safe agricultural electric vehicle that replaces fossil fuels. It was designed with a focus on controlling a wide range of vehicle speeds and securing stability of electric agricultural vehicles. Considering the performance and design, it is composed of a frame, a driving part, a steering part, and a controller system, and we are going to review and manufacture each part. It is believed that the manufactured electric vehicle for agriculture can be easily and conveniently operated in an agricultural society where young manpower is scarce, and can be helpful to the agricultural society through high efficiency.

A Study on the Development of Limited Slip Differential on All Terrain Vehicle (사륜구동 오토바이(ATV)용 차동제한장치(LSD) 개발에 관한 연구)

  • Kim, Jun-An;Jun, Jae-Uhk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • ATV(All Terrain Vehicle) has been developed to be used for agricultural fields on unpaved roads but now it is mostly used to transport a short distance and play leisure sports at mountains. Recently, main concerns on the automobile industry is developing not only a car safe, high fuel efficient and friendly related with environment but also two-wheeled vehicles. In order to maintain high fuel efficiency and safety of two-wheeled vehicle, it is essential that ATV should be set up differential gear. But we worried for ATV which had been set up differential gear not to run on unpaved roads. Therefore, it is necessary to develop LSD(Limited Slip Differential) that maintains existing advantages of ATV and ensures ATV to travel safely on roads. Now LSD equipped cars have a complicated structure, so setting up on ATV is unsuitable. Therefore, in this study, we have developed simple, small and well operating LSD.

Running stability analysis of the Semi-Crawler Type Mini-Forwarder by Using a Dynamic Analysis Program (동역학분석 프로그램을 이용한 반궤도식 임내작업차의 주행안정성 분석)

  • Kim, Jae-Hwan;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.1
    • /
    • pp.98-103
    • /
    • 2015
  • This study was conducted to analyze the running stability of a semi-crawler type mini-forwarder. The running stability analysis was performed by using a dynamic analysis program, RecurDyn. Physical properties of the semi-crawler type mini-forwarder was performed by using 3D CAD modeler, AutoCAD 3D. As a result from the computer simulation of stationary sideways overturning, it was found that the semi-crawler type mini-forwarder runs safely on a road with a slope not bigger than $20^{\circ}$ regardless whether it is empty or loaded, but in case of a road with a slope bigger than $20^{\circ}$, it is assumed that it is difficult for the car to run safely due to some dangers. In addition, it was found that the critical slope of its sideways overturning gets much smaller when empty since the location of its gravity center is elevated and much higher when it is loaded. As a result from the computer simulation of its hill-climbing ability, since the running speed is unstable in case of a road with a vertical slope not smaller than $28^{\circ}$, it is assumed that it is safe to drive it on a road with a slope not bigger than $28^{\circ}$. Taking a look at the result from an analysis of the running safety when it passes an obstacle, it was observed that a front tire comes off the ground when the running speed of the car is 5 and 4 km per hour respectively when it is empty and loaded while the gravity center of the front tire is watched. When taking a look at the changes in the location of the gravity center of the rear wheel crawler shaft, it was not found that the shaft comes off the ground at the test speeds both when it is empty and loaded.