• Title/Summary/Keyword: sRGB

Search Result 354, Processing Time 0.021 seconds

IS THE PEGASUS DWARF GALAXY A MEMBER OF THE LOCAL GROUP?

  • Lee, Myung-Gyoon
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.169-175
    • /
    • 1995
  • Deep V I CCD photometry of the Pegasus dwarf irregular galaxy shows that the tip of the red giant branch (RGB) is located at I = $21.15{\pm}0.10$ mag and (V - I) = $1.58{\pm}0.03$. Using the I magnitude of the tip of the RGB (TRGB), the distance modulus of the Pegasus galaxy is estimated to be $(m\;-\;M)_o\;=\;25.13{\pm}0.11$ mag (corresponding to a distance of d = $1060{\pm}50$ kpc). This result is in a good agreement with the recent distance estimate based on the TRGB method by Aparicio [1994, ApJ, 437, L27],$ (m\;-\;M)_o$ = 24.9 (d = 950 kpc). However, our distance estimate is much smaller than that based on the Cepheid variable candidates by Hoessel et al.[1990, AJ, 100, 1151], $(m\;-\;M)_o\;=\;26.22{\pm}0.20$ (d = $1750{\pm}160$ kpc) mag. The color-magnitude diagram illustrates that the Cepheid candidates used by Hoessel et al.are not located in the Cepheid instability strip, but in the upper part of the giant branch. This result shows that the Cepheid candidates studied by Hoessel et al.are probably not Cepheids, but other types of variable stars. Taking the average of our distance estimate and Aparicio's, the distance to the Pegasus galaxy is d= $1000{\pm}80$ kpc. Considering the distance and velocity of the Pegasus galaxy with respect to the center of the Local Group, we conclude that the Pegasus galaxy is probably a member of the Local Group.

  • PDF

Multimodal approach for blocking obscene and violent contents (멀티미디어 유해 콘텐츠 차단을 위한 다중 기법)

  • Baek, Jin-heon;Lee, Da-kyeong;Hong, Chae-yeon;Ahn, Byeong-tae
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.6
    • /
    • pp.113-121
    • /
    • 2017
  • Due to the development of IT technology, harmful multimedia contents are spreading out. In addition, obscene and violent contents have a negative impact on children. Therefore, in this paper, we propose a multimodal approach for blocking obscene and violent video contents. Within this approach, there are two modules each detects obsceneness and violence. In the obsceneness module, there is a model that detects obsceneness based on adult and racy score. In the violence module, there are two models for detecting violence: one is the blood detection model using RGB region and the other is motion extraction model for observation that violent actions have larger magnitude and direction change. Through result of these three models, this approach judges whether or not the content is harmful. This can contribute to the blocking obscene and violent contents that are distributed indiscriminately.

Video Browsing Using An Efficient Scene Change Detection in Telematics (텔레매틱스에서 효율적인 장면전환 검출기법을 이용한 비디오 브라우징)

  • Shin Seong-Yoon;Pyo Seong-Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.147-154
    • /
    • 2006
  • Effective and efficient representation of color features of multiple video frames is an important vet challenging task for visual information management systems. This paper Proposes a Video Browsing Service(VBS) that provides both the video content retrieval and the video browsing by the real-time user interface on Web. For the scene segmentation and key frame extraction of video sequence, we proposes an efficient scene change detection method that combine the RGB color histogram with the X2 (Chi Square) histogram. Resulting key frames are linked by both physical and logical indexing. This system involves the video editing and retrieval function of a VCR's. Three elements that are the date, the need and the subject are used for video browsing. A Video Browsing Service is implemented with MySQL, PHP and JMF under Apache Web Server.

  • PDF

3D Virtual Reality Game with Deep Learning-based Hand Gesture Recognition (딥러닝 기반 손 제스처 인식을 통한 3D 가상현실 게임)

  • Lee, Byeong-Hee;Oh, Dong-Han;Kim, Tae-Young
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.5
    • /
    • pp.41-48
    • /
    • 2018
  • The most natural way to increase immersion and provide free interaction in a virtual environment is to provide a gesture interface using the user's hand. However, most studies about hand gesture recognition require specialized sensors or equipment, or show low recognition rates. This paper proposes a three-dimensional DenseNet Convolutional Neural Network that enables recognition of hand gestures with no sensors or equipment other than an RGB camera for hand gesture input and introduces a virtual reality game based on it. Experimental results on 4 static hand gestures and 6 dynamic hand gestures showed that they could be used as real-time user interfaces for virtual reality games with an average recognition rate of 94.2% at 50ms. Results of this research can be used as a hand gesture interface not only for games but also for education, medicine, and shopping.

Artificial Neural Network Method Based on Convolution to Efficiently Extract the DoF Embodied in Images

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.51-57
    • /
    • 2021
  • In this paper, we propose a method to find the DoF(Depth of field) that is blurred in an image by focusing and out-focusing the camera through a efficient convolutional neural network. Our approach uses the RGB channel-based cross-correlation filter to efficiently classify the DoF region from the image and build data for learning in the convolutional neural network. A data pair of the training data is established between the image and the DoF weighted map. Data used for learning uses DoF weight maps extracted by cross-correlation filters, and uses the result of applying the smoothing process to increase the convergence rate in the network learning stage. The DoF weighted image obtained as the test result stably finds the DoF region in the input image. As a result, the proposed method can be used in various places such as NPR(Non-photorealistic rendering) rendering and object detection by using the DoF area as the user's ROI(Region of interest).

Estimation of optimal position of a mobile robot using object recognition and hybrid thinning method (3차원 물체인식과 하이브리드 세선화 기법을 이용한 이동로봇의 최적위치 추정)

  • Lee, Woo-Jin;Yun, Sang-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.785-791
    • /
    • 2021
  • In this paper, we propose a methodology for estimating the optimal traversable destination from the location-based information of the object recognized by the mobile robot to perform the object delivery service. The location estimation process is to apply the generalized Voronoi graph to the grid map to create an initial topology map composed of nodes and links, recognize objects and extract location data using RGB-D sensors, and collect the shape and distance information of obstacles. Then, by applying the hybrid approach that combines the center of gravity and thinning method, the optimal moving position for the service robot to perform the task of grabbing is estimated. And then, the optimal node information for the robot's work destination is updated by comparing the geometric distance between the estimated position and the existing node according to the node update rule.

Face Detection Method based Fusion RetinaNet using RGB-D Image (RGB-D 영상을 이용한 Fusion RetinaNet 기반 얼굴 검출 방법)

  • Nam, Eun-Jeong;Nam, Chung-Hyeon;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.519-525
    • /
    • 2022
  • The face detection task of detecting a person's face in an image is used as a preprocess or core process in various image processing-based applications. The neural network models, which have recently been performing well with the development of deep learning, are dependent on 2D images, so if noise occurs in the image, such as poor camera quality or pool focus of the face, the face may not be detected properly. In this paper, we propose a face detection method that uses depth information together to reduce the dependence of 2D images. The proposed model was trained after generating and preprocessing depth information in advance using face detection dataset, and as a result, it was confirmed that the FRN model was 89.16%, which was about 1.2% better than the RetinaNet model, which showed 87.95%.

Automatic Building Extraction Using SpaceNet Building Dataset and Context-based ResU-Net (SpaceNet 건물 데이터셋과 Context-based ResU-Net을 이용한 건물 자동 추출)

  • Yoo, Suhong;Kim, Cheol Hwan;Kwon, Youngmok;Choi, Wonjun;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.685-694
    • /
    • 2022
  • Building information is essential for various urban spatial analyses. For this reason, continuous building monitoring is required, but it is a subject with many practical difficulties. To this end, research is being conducted to extract buildings from satellite images that can be continuously observed over a wide area. Recently, deep learning-based semantic segmentation techniques have been used. In this study, a part of the structure of the context-based ResU-Net was modified, and training was conducted to automatically extract a building from a 30 cm Worldview-3 RGB image using SpaceNet's building v2 free open data. As a result of the classification accuracy evaluation, the f1-score, which was higher than the classification accuracy of the 2nd SpaceNet competition winners. Therefore, if Worldview-3 satellite imagery can be continuously provided, it will be possible to use the building extraction results of this study to generate an automatic model of building around the world.

An Accurate Forward Head Posture Detection using Human Pose and Skeletal Data Learning

  • Jong-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.87-93
    • /
    • 2023
  • In this paper, we propose a system that accurately and efficiently determines forward head posture based on network learning by analyzing the user's skeletal posture. Forward head posture syndrome is a condition in which the forward head posture is changed by keeping the neck in a bent forward position for a long time, causing pain in the back, shoulders, and lower back, and it is known that daily posture habits are more effective than surgery or drug treatment. Existing methods use convolutional neural networks using webcams, and these approaches are affected by the brightness, lighting, skin color, etc. of the image, so there is a problem that they are only performed for a specific person. To alleviate this problem, this paper extracts the skeleton from the image and learns the data corresponding to the side rather than the frontal view to find the forward head posture more efficiently and accurately than the previous method. The results show that the accuracy is improved in various experimental scenes compared to the previous method.

Predicting Unseen Object Pose with an Adaptive Depth Estimator (적응형 깊이 추정기를 이용한 미지 물체의 자세 예측)

  • Sungho, Song;Incheol, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.509-516
    • /
    • 2022
  • Accurate pose prediction of objects in 3D space is an important visual recognition technique widely used in many applications such as scene understanding in both indoor and outdoor environments, robotic object manipulation, autonomous driving, and augmented reality. Most previous works for object pose estimation have the limitation that they require an exact 3D CAD model for each object. Unlike such previous works, this paper proposes a novel neural network model that can predict the poses of unknown objects based on only their RGB color images without the corresponding 3D CAD models. The proposed model can obtain depth maps required for unknown object pose prediction by using an adaptive depth estimator, AdaBins,. In this paper, we evaluate the usefulness and the performance of the proposed model through experiments using benchmark datasets.