• Title/Summary/Keyword: sEMG

Search Result 614, Processing Time 0.023 seconds

Effects of Acupuncture on the Muscle Fatigue Recovery in Different Diameters of Needle (침체굵기에 따른 자침의 근피로도 회복에 미치는 영향)

  • Hwang, Yo-Sun;Park, Chin-Su;Koo, Sungtae
    • Korean Journal of Acupuncture
    • /
    • v.29 no.4
    • /
    • pp.634-642
    • /
    • 2012
  • Objectives : The aim of the study is to find out whether effect of acupuncture is depending on the diameter of needle, which is a possible component of dose of acupuncture needling. Methods : To compare acupuncture effects in different diameters of needle, we measured the changes in muscle fatigue recovery using surface electromyogram(sEMG) in healthy 8 volunteers. Muscle fatigue was induced by 20 times sit-up for 1 min. Immediately after induction of muscle fatigue, acupuncture needle was inserted into ST36 or ST25 for 10 min by diameters of 0.20 mm, 0.30 mm, or 0.40 mm needles. The sEMG recording was followed by acupuncture for 30 min. As a control group, sEMG was recorded for the same period at rest after muscle fatigue induction. Results : In both of ST 36 and ST 25, stimulation with 0.4 mm diameter needle showed significant rapid recovery followed by short period of muscle fatigue increase. Stimulation with 0.2 mm diameter significantly suppressed the increase of muscle fatigue. Conclusions : These data suggest that acupuncture effect is, at least in part, dependent on diameter of needle. Therefore, diameter of needle is also considered to achieve effective outcome of acupuncture.

Electromyography Pattern Recognition and Classification using Circular Structure Algorithm (원형 구조 알고리즘을 이용한 근전도 패턴 인식 및 분류)

  • Choi, Yuna;Sung, Minchang;Lee, Seulah;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.62-69
    • /
    • 2020
  • This paper proposes a pattern recognition and classification algorithm based on a circular structure that can reflect the characteristics of the sEMG (surface electromyogram) signal measured in the arm without putting the placement limitation of electrodes. In order to recognize the same pattern at all times despite the electrode locations, the data acquisition of the circular structure is proposed so that all sEMG channels can be connected to one another. For the performance verification of the sEMG pattern recognition and classification using the developed algorithm, several experiments are conducted. First, although there are no differences in the sEMG signals themselves, the similar patterns are much better identified in the case of the circular structure algorithm than that of conventional linear ones. Second, a comparative analysis is shown with the supervised learning schemes such as MLP, CNN, and LSTM. In the results, the classification recognition accuracy of the circular structure is above 98% in all postures. It is much higher than the results obtained when the linear structure is used. The recognition difference between the circular and linear structures was the biggest with about 4% when the MLP network was used.

Low Frequency Characteristics Analysis of EMG Signal on the Probability Density Function of the IPI (IPI의 확률밀도함수에 의한 근신호의 저주파 특성 해석)

  • 류재춘;조원경;박종국;김성환
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.3
    • /
    • pp.335-342
    • /
    • 1988
  • In this paper, we proposed a new algorithm for EMG low frequency analysis. Through the power spectrum analysis of Gaussian's, Gamma's and Erlang's PDF(probability density function) based on the proposed algorithm, the proper PDF of IPI (inter pulse interval) representing the firing rate of muscle was suggested. In order to verify the proposed algorithm EMG signals of masseter and biceps muscle were detected by surface electrode and its power spectrum analysis was performed. The experimental results are compared with the computer simulaiton. As a result, the masseter muscle's IPI was fitted by Gamma PDF, having a 10Hz fundamental frequency including n(1+\ulcornerfp high harmnic frequency on 10% MVC(maximum voluntary contaraction). And the biceps muscle's IPI was fitted by Gaussian PDF, also it have a 14Hz fundamental frequency.

  • PDF

The Effects of Bee Venom Pharmacopuncture on Muscle Activity and Pain Reception of Upper Limbs Muscles (봉약침이 상지부 근육의 활성 및 통증 수용도에 미치는 영향)

  • Lim, Gwang-Mook;Kim, Jeong-Hwan;Hwang, Eui-Hyoung;Yook, Tae-Han;Ko, Youn-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.3
    • /
    • pp.57-69
    • /
    • 2011
  • Objectives : The purpose of this study is to know the effects of the bee venom pharmacopuncture on muscle activity and pain reception of trapezius and deltoid the upper limbs muscles. Methods : We allocated healthy volunteers into two groups. After having exercise with barbell for load to trapezius and deltoid, we measured sEMG(surface electromyography) and VAS(visual analogue scale). In a moment, inject bee venom pharmacopuncture and saline each group. After 30 minutes, we measured sEMG and VAS again. We compared before and after sEMG and VAS data. Results : On sEMG data, bee venom pharmacopuncture had effects on muscle fatigue on left trapezius, muscle fatigue and fatigue and recovery on right trapezius and both deltoid. On VAS data, values of bee venom pharmacopuncture decreased more than that of saline. Conclusions : These results show that bee venom pharmacopuncture have effects on muscle activity aid pain reception of trapezius and deltoid the upper limbs muscle. But further studies should be carried out to verify the exact effects of bee venom.

The Implementation of the Intelligent Exoskeleton Robot Arm Using ElectroMiogram(EMG) vital Signal (근전도 생체 신호를 이용한 지능형 외골격 로봇팔의 구현)

  • Jeon, Bu-Il;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.533-539
    • /
    • 2012
  • The purpose of this study is to estimate a validity of control signal through a design of Exoskeleton Robot Arm's capable of intelligent recognition as a human arm's motion by using realtime processed data of generated EMG signals. By an intelligent algorithm, the EMG output value of human biceps and triceps muscles contraction can be recognized and used for the control over exoskeleton arm corresponding to human's recognition and judgement. The EMG sensing data of muscles contraction and relaxation are used as the input signal from human's body to operate the Exoskeleton Robot Arm thus copying human arm motion. An intelligent control of Exoskeleton Robot Arm is to design the analog control circuit which processes the input data, and then to manufacture an integrated control board. And then abstracted signal is passed by DSP signal processing, Fuzzy logic algorithm is designed for a accurate prediction of weight or load through the intelligent algorithm, and design an Exoskeleton Robot Arm to express a human's intention.

EMG Activities of Trunk and Lower Extremity Muscles Induced by Different Intensity of Whole Body Vibration During Bridging Exercise

  • Kim, Tack-Hoon;Choi, Houng-Sik
    • Physical Therapy Korea
    • /
    • v.16 no.4
    • /
    • pp.16-22
    • /
    • 2009
  • The purpose of this study was to investigate the trunk and lower extremity muscle activity induced by three different intensity conditions (intensity 1, 3, 5) of whole body vibration (WBV) during bridging exercise. Surface electromyography (EMG) was used to measure trunk and lower extremity muscles activity. Eleven healthy young subjects (6 males, 5 females) were recruited from university students. The collected EMG data were normalized using reference contraction (no vibration during bridging) and expressed as a percentage of reference voluntary contraction. To analyze the differences in EMG data, the repeated one-way analysis of variance was used. A Bonferroni's correction was used for multiple comparisons. The study showed that EMG activity of the rectus abdominis, external oblique, internal oblique, erector spinae and rectus femoris muscles was not significantly different among three intensity conditions of WBV during bridging exercise (p>.05). However, there were significantly increased EMG activity of the medial hamstring muscle (p=.001) and medial gastrocnemius muscle (p=.027) in the intensity 3 condition compared with the intensity 1 condition. This result can be interpreted that vibration was absorbed through the distal muscles, plantar flexor and knee flexor.

  • PDF

Development of an EMG-based Wireless and Wearable Computer Interlace (근전도기반의 무선 착용형 컴퓨터 인터페이스 개발)

  • Han, Hyo-Nyoung;Choi, Chang-Mok;Lee, Yun-Joo;Ha, Sung-Do;Kim, Jung
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.240-244
    • /
    • 2008
  • This paper presents an EMG-based wireless and wearable computer interface. The wearable device contains 4 channel EMG sensors and is able to acquire EMG signals using signal processing. Obtained signals are transmitted to a host computer through wireless communication. EMG signals induced by the volitional movements are acquired from four sites in the lower limb to extract a user's intention and six classes of wrist movements are discriminated by employing an artificial neural network (ANN). This interface could provide an aid to the limb disabled to directly access to computers and network environments without conventional computer interface such as a keyboard and a mouse.

  • PDF

A Computerized Analysis of Kinetic Posture and Muscle Contraction during a Weight Lifting Motion (역도경기(力道競技)의 운동학적(運動學的) 자세(姿勢)와 근수축(筋收縮) 수준(水準)에 관(關)한 전산분석(電算分析))

  • Lee, Myeon-U;Jang, Won-Gyeong;Seong, Deok-Hyeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.9 no.2
    • /
    • pp.9-25
    • /
    • 1983
  • The purpose of this study was to film up computerized analyses for both kinematic posture(film analysis) and muscle dynamics (EMG) during a weight-lifting motion. (Snatch, Clean and Jerk) Using a motor drive camera (3.5 frames/sec) and a Location Analyzer, motion tracks of 13 landmarks, which were attached to the major joints, during the motion were converted into digital values. At the same time, EMG amplitudes from 11 major muscle groups were recorded. Recorded data were processed via analog/hybrid computer (ADAC 480) and digital computer (PDP 11/44). Landmark locations and EMG amplitude were integrated by a computerized routine. Computer output included graphic reproductions on sepuential dislocations of body segments, center of gravity of body segments and the associated changes on EMG amplitude such as % EMG's of major muscle group during a weight lifting motion. The results strongly suggest that the computerized motion-EMG integration can provide a further working knowledge in selection and in training of workers and athletes. Suggestions for a further study include additional device for velocity measurement, expansion of the link model for biomechanical analysis and other implementations necessary for athletic application.

  • PDF

A Novel EMG-based Human-Computer Interface for Electric-Powered Wheelchair Users with Motor Disabilities (거동장애를 가진 전동휠체어 사용자를 위한 근전도 기반의 휴먼-컴퓨터 인터페이스)

  • Lee Myung-Joon;Chu Jun-Uk;Ryu Je-Cheong;Mun Mu-Seong;Moon Inhyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.41-49
    • /
    • 2005
  • Electromyogram (EMG) signal generated by voluntary contraction of muscles is often used in rehabilitation devices because of its distinct output characteristics compared to other bio-signals. This paper proposes a novel EMG-based human-computer interface for electric-powered wheelchair users with motor disabilities by C4 or C5 spine cord injury. User's commands to control the electric-powered wheelchair are represented by shoulder elevation motions, which are recognized by comparing EMG signals acquired from the levator scapulae muscles with a preset double threshold value. The interface commands for controlling the electric-powered wheelchair consist of combinations of left-, right- and both-shoulders elevation motions. To achieve a real-time interface, we implement an EMG processing hardware composed of analog amplifiers, filters, a mean absolute value circuit and a high-speed microprocessor. The experimental results using an implemented real-time hardware and an electric-powered wheelchair showed that the EMG-based human-computer interface is feasible for the users with severe motor disabilities.

Eletromyographic Activities of Trunk and Lower Extremity Muscles During Bridging Exercise in Whole Body Vibration and Swiss Ball Condition in Elderly Women

  • Kim, Tack-Hoon;Lee, Kang-Seong
    • Physical Therapy Korea
    • /
    • v.17 no.4
    • /
    • pp.26-34
    • /
    • 2010
  • The purpose of this study was to compare the trunk and lower extremity muscle activity induced by six different conditions floor, intensity 0, 1, 3, 5 of whole body vibration (WBV), and Swiss ball during bridging exercise. Surface electromyography (EMG) was used to measure trunk and lower extremity muscles activity. Ten elderly women were recruited from Hong-sung Senior Citizen Welfare Center. The collected EMG data were normalized using reference contraction (during floor bridging) and expressed as a percentage of reference voluntary contraction (%RVC). To analyze the differences in EMG data, the repeated one-way analysis of variance was used. A Bonferroni's correction was used for multiple comparisons. The study showed that EMG activity of the rectus abdominis, external oblique, internal oblique, erector spinae and rectus abdominis muscles were not significantly different between six different conditions of during bridging exercise (p>.05). However, there were significantly increased EMG activity of the rectus femoris (p=.034) in the WBV intensity 0, 1, 3, and 5 conditions compared with the floor bridging condition. EMG activity of the medial gastrocnemius were significantly increased in the WBV intensity 0, 1, 3, 5 and Swiss ball conditions compared with the floor bridging condition. Future studies are required the dynamic instability condition such as one leg lifting in bridging.