• Title/Summary/Keyword: s-Al.p

Search Result 1,313, Processing Time 0.037 seconds

Effect of Si on the Corrosion Properties of Mg-Li-Al Light Alloy (경량화 Mg-Li-Al합금의 내식성에 미치는 Si의 영향)

  • 김순호
    • Resources Recycling
    • /
    • v.7 no.5
    • /
    • pp.52-57
    • /
    • 1998
  • Effect of Si in the electrochemical corrosion characteristics of Mg-Li-Al light alloy has been investigated by means of potentiodynamic polarization study. The elecrochemical behaviors were evaluated in 003% NaCl solution and the solution buffered with KH$_{2}PO_{5}{\cdot}$NaOH at room temperature. It was found that the addition of very small quantity of Si (0.48 wt%) in Mg-Li-Al light alloy increased corrosion rates and amount of corrosion products and decreated the pitting resistance of the alloy. From the results it was concluded that Si which is added to increase the strength of Mg-Li-Al alloy is harmful to corrosion properties of the alloy.

  • PDF

The Patterns of Inorganic Cations, Nitrogen and Phosphorus of Plants in Moojechi Moor on Mt. Jeongjok. (정족산 무제치늪 식물의 무기이온, 질소 및 인의 양상)

  • 배정진;추연식;송승달
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.109-114
    • /
    • 2003
  • To investigate ecophysiological characteristics of plants species adapted to moor habitat, we selected 22 species plants and analyzed inorganic cations (K, Ca, Mg), heavy metals (Al, Fe, Mn) and total nitrogen and phosphorus quantitatively. Moojechi moor indicated typical acidic and oligotrophic conditions with pH of 5.0∼5.6 (pH 4.3∼5.1 in soil) and EC of 15∼30μ S/cm, and contained very low contents of soil divalent cation such as Ca and Mg but high contents of heavy metals (esp. Al). With respect to inorganic cation contents, investigated plants species showed remarkable interspecific difference. Plant species belonging to J. effusus var. decipiens, M. japonica, I. globosa, M. sacchariflorus, R. mucronulatum, R. yedoense var. poukhanense, H. micrantha, D. rotundifolia showed very low contents of inorganic cation below 400 μ M/g DW, but plant species of C. palustris var. spontanea, L. sessilifolia, P. mandarinorum, C. lineare, S. austriaca sub. glabra, V. mandshurica, A. decursiva showed high cation contents in leaves. Especially, S. austriaca sub. glabra (Compositae) and V. mandshurica (Violaceae) showed pattern accumulating Ca and Mg with plant growth, but I. ensata var. spontanea (Iridaceae) and S. officinalis (Rosaceae) showed decreasing tendency. Meanwhile, most plant species showed low contents of soluble metal ions in leaves in spite of high heavy metal contents on soil, and indicated remarkable interspecific differences in the total contents and composition of heavy metals accumulated. Despite low contents of N and P on soil, most plant species indicated relatively high contents of N and P in leaves at the early stage of growth, and showed slowly decreasing pattern according to growth. Consequently, it seems that plant species inhabited on Moojechi moor cope with acidic-oligotrophic conditions, accumulating inorganic cations and nitrogen at the early growing stage and reutilizing them in the course of growth, and developing heavy metal excluding mechanism.

Statistical Study For The prediction of pKa Values of Substituted Benzaldoxime Based on Quantum Chemicals Methods

  • Al-Hyali, Emad A.S.;Al-Azzawi, Nezar A.;Al-Abady, Faiz M.H.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.733-740
    • /
    • 2011
  • Multiple regression analysis was used for the calculation of pKa values of 15 substituted benzaldoximes by using various types of descriptors as parameters. These descriptors are based on quantum mechanical treatments. They were derived by employing semi-empirical calculation represented by the PM3 model and an Abinitio method expressed by Hartree-Fock(HF) model performed at the 6-311 G(d, p) level of theory. The parameters tested for their ability to represent the variations observed in the experimental pKa(s) are atomic and structural properties including Muliken charges on the atoms of hydroxyl group and C=N bond, the angle $C_6-C_1-C_7$, and length of O-H bond. Molecular properties are also used like energies of HOMO and LUMO, hardness(${\eta}$), chemical potential(${\mu}$), total energy(TE), dipole of molecule(DM), and electrophilicity index(W). The relation between pKa values and each of these parameters of the studied compounds is investigated. Depending on these relations, two sets of parameters were constructed for comparison between the PM3 and HF methods. The results obtained favor the Abinitio method for such applications although both models proved to have high predictive power and have sufficient reliability to describe the effect of substituents on pKa values of benzaldoxime compounds under consideration which is clear from the values of correlation coefficient $R^2$ obtained and the consistency between the experimental and the calculated values.

The Characteristics of Runoff from a Forest Watershed with Different Vegetation (식생이 다른 산림유역 유출수의 특성)

  • Lee, Ho-Beom;Park, Chan-Oh;Shin, Dae-Yewn
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.311-316
    • /
    • 2007
  • In this study, we investigated the presence of nitrogen, phosphorus, ions, heavy metals and other contaminations in the water stream and soil of the forest watershed with different geology and vegetations for one year from October 2004 to September 2005. Most of the nitrogen oxide in the soil was in the form of $NO_3^-$, and it appeared that nitrogen contents decreased as the soil depth increased. Nitrogen contents was highest in the basalt area showing 13.3 mg/g in the surface soil and 7.40 mg/g in the subsoil. Phosphorous contents showed no significant variations depending on the soil depth and was higher in the intermediate soil layer(60 cm) than in surface soil (30 cm) in granite and metamorphic rock areas. Nitrogenous compound in the soil water was 8.03 mg/L in the granite area of coniferous forest and 14.79 mg/L in the andesite area of the deciduous forest. Nitrogenous compound in the stream water was 5.53 mg/L in October and 6.99 mg/L in January in the granite area of the coniferous forest and $3.61\sim5.11$ mg/L in the andesite area of the deciduous forest. Phosphates in runoff and stream water were similar in coniferous with in deciduous forests, showing a slight increase(0.090$\sim$0.179 mg/L) in the basalt area. In the coniferous forest, pH showed a significant positive correlation with EC, $Ca^{2+}$ and $Cl^-$ at p < 0.01, and showed a negative correlation with S-Fe and S-Al. Electroconductivity showed a significant correlation of 0.601 with $Ca^{2+}$ and of -0.586 with $NO_3^-$ at p<0.01, and showed a significant correlation of 0.301 with $SO_4^{2-}$ and of -0.295 with S-Fe at p < 0.05. In the deciduous forest, pH showed a positive correlation with $Ca^{2+}$ at p < 0.05, and showed a negative correlation with $K^+$, S-Fe and S-Al at p < 0.01. Electroconductivity showed a significant positive correlation with $Ca^{2+}$ and $Cl^-$ at p < 0.05 and with $NO_3^-$ at p < 0.01.

A Study on the Sacrificial Anode for Imparting High Capabilities to Cathodic Protection (전기방식시 적용되는 희생양극의 성능개발에 대한 연구)

  • 김성종
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.37-42
    • /
    • 1998
  • Al alloy anode is mostly used for protecting marine structures such as pier steel piles and ship's body. Recently it has been reported that the life of Al alloy anode has been shortened significantly than the original design life. It is suggested that the suspected reasons for this problem mentioned above seems to be the improper protection design of alloy of anode on sea water regardless of environmental facotrs such as flow rate, temperature, contamination degree etc. However there is few paper about to the sea water contamination degree affecting to the life of Al alloy anode. In this study, the property of Al alloy anode was investigated as a parameter of sea water contamination degree such as variation of pH 2, 4, 6, 8, 10 and each sea port's contaminated waters.

  • PDF

Characterization of Mutations in AlHK1 Gene from Alternaria longipes: Implication of Limited Function of Two-Component Histidine Kinase on Conferring Dicarboximide Resistance

  • Luo, Yiyong;Yang, Jinkui;Zhu, Mingliang;Yan, Jinping;Mo, Minghe;Zhang, Keqin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • Four series (S, M, R, and W) of Alternaria longipes isolates were obtained based on consecutive selection with Dimethachlon (Dim) and ultraviolet irradiation. These isolates were then characterized according to their tolerance to Dim, sensitivity to osmotic stress, and phenotypic properties. All the selected Dim-resistant isolates showed a higher osmosensitivity than the parental strains, and the last generation was more resistant than the first generation in the M, R, and W series. In addition, the changes in the Dim resistance and osmotic sensitivity were not found to be directly correlated, and no distinct morphologic characteristics were found among the resistant and sensitive isolates, with the exception of the resistant isolate K-11. Thus, to investigate the molecular basis of the fungicide resistance, a group III two-component histidine kinase (HK) gene, AlHK1, was cloned from nineteen A. longipes isolates. AlHK1p was found to be comprised of a six 92-amino-acid repeat domain (AARD), HK domain, and response regulator domain, similar to the Os-1p from Neurospora crassa. A comparison of the nucleotide sequences of the AlHK1 gene from the Dim-sensitive and -resistant isolates revealed that all the resistant isolates contained a single-point mutation in the AARD of AlHK1p, with the exception of isolate K-11, where the AlHK1p contained a deletion of 107 amino acids. Moreover, the AlHK1p mutations in the isolates of each respective series involved the same amino acid substitution at the same site, although the resistance levels differed significantly in each series. Therefore, these findings suggested that a mutation in the AARD of AlHK1p was not the sole factor responsible for A. longipes resistance to dicarboximide fungicides.

Microstructure and Mechanical Properties of (Ti,Al)N Films Deposited by Ion Beam Sputtering (이온빔 스퍼터링에 의해 제조된 (Ti,Al)N 박막의 미세구조 및 기계적 특성)

  • Oh, Y.G.;Baeg, C.H.;Hong, J.W.;Wey, M.Y.;Kang, H.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.6
    • /
    • pp.329-334
    • /
    • 2003
  • Microstructure and mechanical properties of $(Ti_{1-x}Alx)N$ films, Produced by the the Ion Beam Sputtering(IBS) method, were studied by changing the Ti, Al contents. The compositions of films determined by RBS were $(Ti_{0.75}Al_{0.25})N$, $(Ti_{0.61}Al_{0.39})N$ and $(Ti_{0.5}Al_{0.5})N$, and XPS binding energies of Ti2P, A12p and N1s shifted to higher energies than those of pure Ti, Al and N, which indicated that nitrides were formed. XRD results indicated that the NaCl structure for $$x{\leq_-}0.39$$ changed into amorphous structure at x=0.5. For films with $$x{\leq_-}0.39$$, the lattice parameter decreased in proportion to the Al content. Nanoindentation hardness value were above HV=3300 at Al content up to x=0.39. However, the hardness of films with x=0.5 abruptly decreased to HV=1800, and this lower hardness values were attributed to different crystal structure. Critical load(Lc) in scratch test showed 23N at x=0.25, 22N at x=0.39 and 22N at x=0.5, which indicated that films with different Al contents showed similar adhesion behavior.

NEW SELECTIVE AND POTENT INHIBITORS OF HUMAN CYTOCHROM P450 1A FAMILY ENZYMES

  • F. Peter Guengerich;Chun, Young-Jin;Kim, Sanghee;Kim, Donghak;Lee, Sang-Kwang;Dong, Mi-Sook;Ueng, Yune-Fang
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.37-38
    • /
    • 2001
  • The cytochrome P450 (P450) 1 family (1A1, 1A2, 1B1) is involved in the activation of many pro-carcinogens. Previously we characterized a number of synthetic bi- and polycyclic hydrocarbon acetylenes as selective-mechanism-based inhibitors of recombinent P450s 1A1, 1A2, 1B1 (Shimada et al., Chem. Res. Toxicol., 11, 1048-1056, 1998). We reported that the drug oltipraz is a mechanism-based indicator of P450 1A2 (Lagouet et al. Chem. Res. Toxicol., 13, 245-252, 2000).(omitted)

  • PDF

Seasonal color change of the oxyhydrous precipitates in the Taebaek coal mine drainage, south Korea, and implications for mineralogical and geochemical controls

  • Kim, J. J.;C. O. Choo;Kim, S. J.;K. Tazaki
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.38-39
    • /
    • 2001
  • The seasonal changes in pH, Fe, Al and SO$_4$$\^$2-/ contents of acid drainage released from coal mine dumps play a major role in precipitation of metal hydroxides in the Taebaek coal field area, southeastern Korea. Precipitates in the creeks underwent a cycle of the color change showing white, reddish brown and brownish yellow, which depends on geochemical factors of the creek waters. White precipitates consist of Al-sulfate (basaluminite and hydrobasaluminite) and reddish brown ones are composed of ferrihydrite and brownish yellow ones are of schwertmannite. Goethite coprecipitates with ferrihydrite and schwertmannite. Ferrihydrite formed at higher values than pH 5.3 and schwertmannite precipitated below pH 4.3, and goethite formed at the intermediate pH range between the two minerals. With the pH being increased from acid to intermediate regions, Fe is present both as schwertmannite and goethite. From the present observation, the most favorable pH that basauluminte can precipitate is in the range of pH 4.45-5.95. SEM examination of precipitates at stream bottom shows that they basically consist of agglomerates of spheroid and rod-shape bacteria. Bacteria species are remarkably different among bottom precipitates and, to a less extent, there are slightly different chemical compositions even within the same bacteria. The speciation and calculation of the mineral saturation index were made using MINTEQA2. In waters associated with yellowish brown precipitates mainly composed of schwertmannite, So$_4$ species is mostly free So$_4$$\^$2-/ ion with less AlSo$_4$$\^$+/, CaSo$\sub$(aq)/, and MgSo$\sub$4(aq)/. Ferrous iron is present mostly as free Fe$\^$2+/, and FeSo$\sub$4(aq)/ and ferric iron exists predominantly as Fe(OH)$_2$$\^$+/, with less FeSo$\sub$4(aq)/, Fe(OH)$_2$$\^$-/, FeSo$_4$$\^$-/ and Fe$\^$3+/, respectively Al exists as free Al$\^$3+/, AlOH$_2$$\^$-/, (AlSo$_4$)$\^$+/, and Al(So$_4$)$\^$2-/. Fe is generally saturated with respect to hematite, magnetite, and goethite, with nearly saturation with lepidocrocite. Aluminum and sulfate are supersaturated with respect to predominant alunite and less jubanite, and they approach a saturation state with respect to diaspore, gibbsite, boehmite and gypsum. In the case of waters associated with whitish precipitates mainly composed of basaluminite, Al is present as predominant Al$\^$3+/ and Al(SO$_4$)$\^$+/, with less Al(OH)$\^$2+/, Al(OH)$_2$$\^$+/ and Al(SO$_4$)$\^$2-/. According to calculation for the mineral saturation, aluminum and sulfate are greatly supersaturated with respect to basaluminite and alunite. Diaspore is flirty well supersaturated while jubanite, gibbsite, and boehmite are already supersaturated, and gypsum approaches its saturation state. The observation that the only mineral phase we can easily detect in the whitish precipitate is basaluminite suggests that growth rate of alunite is much slower than that of basaluminite. Neutralization of acid mine drainage due to the dilution caused by the dilution effect due to mixing of unpolluted waters prevails over the buffering effect by the dissolution of carbonate or aluminosilicates. The main factors to affect color change are variations in aqueous geochemistry, which are controlled by dilution effect due to rainfall, water mixng from adjacent creeks, and the extent to which water-rock interaction takes place with seasons. pH, Fe, Al and SO$_4$ contents of the creek water are the most important factors leading to color changes in the precipitates. A geochemical cycle showing color variations in the precipitates provides the potential control on acid mine drainage and can be applied as a reclamation tool in a temperate region with four seasons.

  • PDF