• Title/Summary/Keyword: runoff reduction facilities

Search Result 72, Processing Time 0.027 seconds

A Study of Optimal-CSOs by Continuous Rainfall/Runoff Simulation Techniques (연속 강우-유출 모의기법을 이용한 최적 CSOs 산정에 관한 연구)

  • Jo, Deok Jun;Kim, Myoung Su;Lee, Jung Ho;Kim, Joong Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1068-1074
    • /
    • 2006
  • For receiving water quality protection a control systems of urban drainage for CSOs reduction is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as storm-water detention storage is highly dependant on the temporal variability of storage capacity available as well as the infiltration capacity of soil and recovery of depression storage. For the continuous long-term analysis of urban drainage system this study used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model has evolved that offers much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. Runoff characteristics manifested the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual CSOs, number of CSOs and event mean CSOs for the decision of storage volume.

Characteristics of Non-point Pollution Runoff in Mandae, Gaa, and Jaun Districts and Evaluation of Reduction Projects (만대·가아·자운지구 비점오염 유출특성 분석 및 저감사업 평가)

  • Woo, Soo-Min;Kum, Dong-Hyuk;Hong, Eun-Mi;Lim, Kyoung-Jae;Shin, Min-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.65-77
    • /
    • 2022
  • Due to muddy water from the highland fields upstream of Soyangho Lake, the Mandae, Gaa, and Jawoon have been redesignated as NPS management areas. This study aims to evaluate the adequacy and supplementation points of the implementation plan by analyzing the operation status of muddy water generation and reduction facilities through on-site investigations by NPS management area to achieve the effective nonpoint pollution reduction goal in the implementation of the implementation plan established in 2020. The SS load calculated based on the survey results from July to October 2019 from 2017 showed a decreasen in 2019 compared to 2017. Both and the Jawoon were analyzed to have decreased. However, the amount of precipitation also decreased by about 27%, so it was judged that the effect of the reduction project was not significant. As a result of the detailed investigation of abatement facilities, about 86% of the 793 facilities installed in the management area were evaluated as 'good'. As a result of a detailed investigation by subwatersheds, subwatersheds 105 and 106 in the Mandae were analyzed as apprehensive subwatersheds. appeared to fall. In addition, it was analyzed that the effect of reducing muddy water in the Mandae district was insufficient due to the high ratio of leased farmers, lack of efforts to reduce turbid water in leased farmland, conversion to annual crops, and neglect of bare land. In the case of Gaa district, although the abatement facilities are concentrated in the upstream, muddy water was also found to be severe.

Characteristics and Fate of Stormwater Runoff Pollutants in Constructed Wetlands (도시지역에 적용가능한 인공습지에서의 강우유출수 함유 오염물질의 거동과 특성)

  • Alihan, Jawara Christian;Maniquiz-Redillas, Marla;Choi, Jiyeon;Flores, Precious Eureka;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Nonpoint source (NPS) pollution continues to degrade the water quality. NPS pollutants signals high concerns against a sustainable environment. Low impact development (LID) is the leading management practice which regulates and treats stormwater runoff especially in highly impervious urban areas. Constructed wetlands are known to have efficient removal capability of NPS pollutants. Likewise, these LID facilities were intended to maintain the predeveloped hydrologic regime through series of mechanisms such as particle settling, filtration, plant uptake, and etc. In this study, the objective was to investigate the characteristics, fate and treatment performance of the two in-campus constructed wetlands (SW1 and SW2) which were installed adjacent to impervious roads and parking lots to treat stormwater runoff. A total of 42 storm events were monitored starting from July 2010 until November 2015. Manual grab sampling was utilized at the inlet and outlet units of each LID facilities. Based on the results, the wetlands were found to be effective in reducing 37% and 41% of the total runoff volume and peak flows, respectively. Aside from this, outflow EMCs were generally lower than the inflow EMCs in most events suggesting that the two wetlands improved the water quality of stormwater runoff. The average removal efficiency of pollutants in facilities were 63~79% in TSS, 38~54% in TN, 54% in TP and 32%~81% in metals. The results of this study recommend the use of constructed wetlands as efficient treatment facility for urban areas for its satisfactory performance in runoff and pollutant reduction.

Application of SWMM for Reduction of Runoff and Pollutant Loading in LID Facilities (LID시설의 유출량 및 오염부하 저감효율평가를 위한 SWMM모델의 적용)

  • Jung, Kwang-Wook;Jung, Jong-Suk;Park, Jin-Sung;Hyun, Kyoung-Hak
    • Land and Housing Review
    • /
    • v.8 no.4
    • /
    • pp.249-256
    • /
    • 2017
  • Urbanization can be remarkable affected flood, pollutant loading, ecological system, and green infrastructure by distortion of hydrologic cycle. In order to mitigate these problems in urban, Low Impact Development(LID) technique has been introduced and applied in the world. SWMM model was calibrated with sets of field monitoring data and applied for calculation of runoff and pollutant loading in Asan-tangjung LID city under 2016 rainfall. Runoff reduction of watershed and catchment basins were showed efficiency 12.2% and 62.0%, respectively. Reduction of COD and TP loading also high efficiency in catchment basins were evaluated 74.9 and 71.4%. The results of this study can be used effectively in decision making processes of urban development project by comparing watershed runoff and pollutant reduction by designs of sort of LID technique, LID volume and location.

Evaluation of Nonpoint Pollutant Management Effect by Application of Organic Soil Ameliorant Based on Renewable Resources in Urban Watershed (도시유역에서 재생자원기반 유기성 토량개량제 적용에 따른 비점오염물질 관리 효과 평가)

  • Yoonkyung Park;Chang Hyuk Ahn
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.3
    • /
    • pp.131-139
    • /
    • 2024
  • This study investigated the chemical properties of Organic Soil Amendments (OSAs) made from organic waste. It also assessed the effectiveness of using these OSAs in the soil layer of Green Infrastructure (GI) to reduce stormwater runoff and non-point source pollutants. The goal was to improve the national environmental value through resource recycling and contribute to the circular economy transformation and carbon neutrality of urban GI. The OSAs used in this study consisted of spent coffee grounds and food waste compost. They were found to be nutrient-rich and stable as artificial soils, indicating their potential use in the soil layer of GI facilities. Applying OSAs to bio-retention cells and permeable pavement resulted in a reduction of approximately 11-17% in stormwater runoff and a decrease of about 16-18% in Total Phosphorus (TP) discharge in the target area. Increasing the proportion of food waste compost in the OSAs had a positive impact on reducing stormwater runoff and pollutant emissions. This study highlights the importance of utilizing recycled resources and can serve as a foundation for future research, such as establishing parameters for assessing the effectiveness of GI facilities through experiments. To enable more accurate analysis, it is recommended to conduct studies that consider both the chemical and biological aspects of substance transfer in OSAs.

Rainwater Infiltration Characteristics in the Unsaturated Soil : Comparison of Finite Element Model with Experimental Results (불포화 토양에서 빗물의 침투특성 : 유한요소 모델과 실험결과 비교)

  • Yoo, Kun-Sun;Kim, Sang-Rae;Kim, Tschung-Il;Yoon, Hyun-Sik;Han, Moo-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.27-33
    • /
    • 2011
  • Infiltration plays an important role in the urban water cycle. Infiltration has a potential to contribute to groundwater recharge in addition to runoff reduction. However, infiltration in urban areas has been considered only as a means of runoff reduction. Conventional design methods for infiltration facilities assume soils to be fully-saturated for the sake of simplicity. The amount of groundwater recharge can not be estimated properly with this scheme. Hence, the characteristics of the unsaturated soil condition need to be considered. The finite element model using SEEP/W to estimate infiltration under the unsaturated condition is presented. Infiltration tests for Joomonjin sand are performed and the infiltration behavior of Joomoonjin sand under the unsaturated condition is measured experimentally to verify the validity of the finite element model. The results from comparing infiltrated volume between the saturated and the unsaturated conditions under the same soil and rainfall conditions show that the infiltrated volume in the unsaturated condition is two times bigger than that in the saturated condition.

An Experimental Study on the Analysis of Infiltration Capacity of the Permeable Block (투수성 보도블록의 침투능 분석에 관한 실험적 연구)

  • Lee, Hoon;Jung, Do-Joon;Kim, Young-Bok;Kim, Yun-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.99-106
    • /
    • 2009
  • This research was to estimate quantitative infiltration volume of permeable block which is one of runoff reduction infiltration facilities. In this research, the permeable block experiments estimating infiltration volume for 50, 100, 150, 200 mm/hr rainfall intensity were carried out and hydraulic experiments results were compared with numerical simulation output to produce feasibility of numerical simulation. Final infiltration capacity analysis of permeable block hydraulic experiments reveals that every estimated infiltration volume before runoff beginning was above approximately 300.0 l despite rapid reduction of infiltration ratio and runoff initiation time were occurred in every rainfall intensity. Statistical calculation for coefficient of determination based on cumulative infiltration volume of hydraulic experiment and numerical simulation resulted in a high correlationship as $0.958{\sim}0.996$.

Hydrological Evaluation of Rainwater Harvesting: 2. Hydrological Evaluation (빗물이용의 수문학적 평가: 2. 수문학적 평가)

  • Kim, Kyoungjun;Yoo, Chulsang;Yun, Zuhwan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.230-238
    • /
    • 2008
  • This study evaluated the economic aspect of the rainwater harvesting facilities by hydrologically analyzing the inflow, rainwater consumption, rainfall loss, tank storage, and overflow time series to derive the net rainwater consumption and the number of days of rainwater available. This study considers several rainwater harvesting facilities in Seoul National University, Korea Institute of Construction Technology and Daejon World Cup Stadium and the results derived are as follows. (1) Increasing the water consumption decreases the number of days of rainwater available. (2) Due to the climate in Korea, a larger tank storage does not increase the amount and the number of days of water consumption during wet season (June to September), but a little in October. (3) Economic evaluation of the rainwater harvesting facilities considered in this study shows no net benefit (private benefit). (5) Flood reduction effect of rainwater harvesting facilities was estimated very small to be about 1% even in the case that 10% of all the basin is used as the rainwater collecting area.

Analysis of Non-point Pollution Source Removal Efficiencies according to Rainfall Characteristics in Low Impact Development Facilities with Vegetation (식생이 적용된 비점오염 저감시설의 강우 특성에 따른 효율 분석)

  • Ku, Soo-Hwan;Im, Jiyeol;Oa, Seong-Wook;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.247-255
    • /
    • 2017
  • This research was conducted to analyze removal efficiencies of non-point pollution source (NPS) in low impact development (LID) facilities with vegetation. In this research, removal efficiencies of NPS were calculated using rainfall monitoring data for 5 years in grassed swale (GS) and vegetative filter strip (VFS). TSS was greater than other pollutants, and it ranged 11.9 ~ 351.7 mg/L in GS and 12.8 ~ 350.7 mg/L in VFS. Outflow EMCs were reduced than inflow EMCs, overall removal efficiencies of NPS were 67 ~ 86% in GS and 63 ~ 91% in VFS. 50 % reduction efficiency of rainfall runoff was observed between inflow and outflow in each LID facility. TSS removal efficiency in GS and VFS was correlated with rainfall characteristics. The rainfall for TSS removal efficiency over 50% was determined about 31 mm, 34 mm and average rainfall intensity was 3.0 mm/hr, 3.9 mm/hr in GS and VFS. Therefore, GS and VFS were regarded effective LID facilities as removal of pollutants and rainfall runoff. Also, this research result can be used as an important data for management of NPS.

Analysis of Applicability of the Detention in Trunk Sewer for Reducing Urban Inundation (도시 내수침수 저감을 위한 간선저류지 적용성 분석)

  • Lee, Sung Ho;Kim, Jung Soo;Kim, Seo Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.44-53
    • /
    • 2021
  • The flood prevention capacity of drainage facilities in urban areas has weakened because of the increase in impervious surface areas downtown owing to rapid urbanization as well as localized heavy rains caused by climate change. Detention can be installed in trunk sewers and linked to existing drainage facilities for the efficient drainage of runoff in various urban areas with increasing stormwater discharge and changing runoff patterns. In this study, the concept of detention in trunk sewers, which are storage facilities linked to existing sewer pipes, was applied. By selecting a virtual watershed with a different watershed shape, the relationship between the characteristic factors of detention in the trunk sewer and the design parameters was analyzed. The effect of reducing stormwater runoff according to the installation location and capacity of the reservoir was examined. The relationship between the installation location and the capacity of the detention trunk sewer in the Dowon district of the city of Yeosu, South Korea was verified. The effects of the existing water runoff reduction facility and the detention trunk sewer were also compared and analyzed. As a result of analyzing the effects of reducing internal inundation, it was found that the inundation area decreased by approximately 66.5% depending on the installation location of the detention trunk sewer. The detention trunk sewer proposed in this paper could effectively reduce internal inundation in urban areas.