• Title/Summary/Keyword: runoff reduction

Search Result 339, Processing Time 0.02 seconds

Analysis of the Efficiency of Non-point Source Pollution Managements Considering the Land Use Characteristics of Watersheds (유역의 토지이용 특성을 고려한 비점오염원 관리방안 적용에 따른 저감 효율 분석)

  • Choi, Yujin;Lee, Seoro;Kum, Donghyuk;Han, Jeongho;Park, Woonji;Kim, Jonggun;Lim, Kyoungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.405-422
    • /
    • 2020
  • Land use change by urbanization has significantly affected the hydrological process including the runoff characteristics. Due to this situation, it has been becoming more complicated to manage non-point source pollutions caused by rainfall. In order to effectively control non-point sources, it is necessary to identify the reduction efficiency of the various management method based on land use characteristics. Thus, the purpose of this study is to analyze the reduction efficiency of non-point source pollution management practices targeting three different watersheds with the different land use characteristics using the Soil and Water Assessment Tool (SWAT). To do this, the vulnerable subwatersheds to non-point source pollution occurrence within each watershed were selected based on the streamflow and water quality simulation results. Then, considering the land use, low impact development (LID) or best management practices (BMPs) were applied to the selected subwatersheds and the efficiency of each management was analyzed. As a result of analysis of the non-point source pollution reduction efficiency, when LID was applied to urban areas, the average reduction efficiencies of SS, NO3-N, and TP were 5.92%, 4.62%, and 10.35%, respectively. When BMPs were applied to rural areas, the average reduction efficiencies of SS, TN and TP were 35.45%, 4.37%, and 10.16%, respectively. The results of this study can be used as a reference for determining appropriate management methods for non-point source pollution in urban, rural, and complex watersheds.

Reduction Efficiency of the Stormwater Wetland from Animal Feeding-Lot (강우유출수 처리목적 인공습지의 강우시 오염물질 저감특성에 관한 연구)

  • Park, Kisoo;Niu, Siping;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.79-90
    • /
    • 2013
  • Stormwater wetland targeted to treat the rainfall runoff from cow feeding-lot basin has been monitored from May 2010 to November 2011. Reduction efficiency estimated based on 20 rainfall event monitoring was 88%, 54%, 70%, 31%, and 64% for TSS, BOD, $COD_{Cr}$, TN, and TP, respectively. Theoretically, as rainfall depth increases, hydraulic exchange ratio has to be increased. When the exchange ratio approaches to 1 (usually design goal), TSS reduction efficiency was estimated about 55%. Uncertainty in reduction efficiency of the stormwater wetland is normally very high due to the continuous rainfall activity, its magnitude and intensity, antecedent dry days, and other natural variables which can not be controlled by experiment conductors. In this study, predominant affecting variables was found to be hydraulics caused by consecutive rainfall events having different intensity and algal growth during dry days.

Characteristics of Non-point Pollution Runoff in Mandae, Gaa, and Jaun Districts and Evaluation of Reduction Projects (만대·가아·자운지구 비점오염 유출특성 분석 및 저감사업 평가)

  • Woo, Soo-Min;Kum, Dong-Hyuk;Hong, Eun-Mi;Lim, Kyoung-Jae;Shin, Min-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.65-77
    • /
    • 2022
  • Due to muddy water from the highland fields upstream of Soyangho Lake, the Mandae, Gaa, and Jawoon have been redesignated as NPS management areas. This study aims to evaluate the adequacy and supplementation points of the implementation plan by analyzing the operation status of muddy water generation and reduction facilities through on-site investigations by NPS management area to achieve the effective nonpoint pollution reduction goal in the implementation of the implementation plan established in 2020. The SS load calculated based on the survey results from July to October 2019 from 2017 showed a decreasen in 2019 compared to 2017. Both and the Jawoon were analyzed to have decreased. However, the amount of precipitation also decreased by about 27%, so it was judged that the effect of the reduction project was not significant. As a result of the detailed investigation of abatement facilities, about 86% of the 793 facilities installed in the management area were evaluated as 'good'. As a result of a detailed investigation by subwatersheds, subwatersheds 105 and 106 in the Mandae were analyzed as apprehensive subwatersheds. appeared to fall. In addition, it was analyzed that the effect of reducing muddy water in the Mandae district was insufficient due to the high ratio of leased farmers, lack of efforts to reduce turbid water in leased farmland, conversion to annual crops, and neglect of bare land. In the case of Gaa district, although the abatement facilities are concentrated in the upstream, muddy water was also found to be severe.

A Methodology for the Estimation of Design Flood of a Small Watershed (소하천유역(小河川流域)의 계획홍수량(計劃洪水量) 산정방법(算定方法)의 개발(開發))

  • Yoon, Yong Nam;Ahn, Tae Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.103-112
    • /
    • 1984
  • This study is an effort to develop a series of empirical procedure for the determination of design flood for a small watershed based on the unit hydrograph theory. It is shown that a flood discharge of a watershed with a specific return period can be expressed as a product of its watershed area, rainfall factor, runoff factor and flood peak reduction factor. Since the procedures for the determination of rainfall factor and runoff factor were already developed in the previous study (13) a series of step-by-step procedure is devised to empirically determine the flood peak reduction factor in the present study. Using the methodology developed herein the 50-year design flood, which is of concern in the drainage of agricultural lands, is estimated for a watershed on upper Kyungan River and compared with the design floods by the existing methods now in use. The flood peak reduction factor was correlated with the dimensionless parameter consisted of the rainfall duration divided by the basin lag time, which was computed from the derived unit hydrographs by the method of moment. The unit hydrographs of various durations were synthesized by the method of build up and S-curve. A multiple correlation was also made between the basin lag time and the physiographic parameters of the watershed, i.e., the stream length and the average stream slope.

  • PDF

Evaluation of the Volume and Pollutant Reduction in an Infiltration and Filtration Facility with Varying Rainfall Conditions (침투여과시설의 강우계급에 따른 유량 및 비점오염물질 저감 효과 분석)

  • Yu, Gigyung;Choi, Jiyeon;Kang, Hee-Man;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Urban areas generate large amounts of stormwater and non-point source (NPS) pollutants during rainfall events. These are caused by various land use runoffs, vehicular and human activities and increased impervious cover. The increased runoff and NPS pollutants cause water quality deterioration in the receiving waters and adversely affect the aqua-ecosystem. These environmental impacts could be reduced through the application of low impact development (LID) techniques. In Korea, more than 80% of the total rainfall occurs in summer and most of these were 10 mm or less. Therefore, if the LIDs developed were able to cope with rainfall of 10 mm and below, NPS management could be efficiently conducted. This research was performed to determine the effect of varying amounts of rainfall on the performance capability of an established infiltration and filtration facility (IF facility) that can be applied to Korea's common rainfall ranges. The IF facility area was 1.75% of the catchment area, however the facility treated more than 40% and 60% runoff volume and pollutant reduction respectively for a 10 mm rainfall. Lastly, higher volume and pollutant reduction could be attained when the LID area was at least 2% of the entire catchment.

Development of Optimal Urban Runoff System : I. Study of Inflow/Infiltration Estimation Considering AHP in Urban Runoff System (최적 도시유출시스템의 개발 : I. 도시유출시스템에서의 AHP를 고려한 불명수량 산정에 대한 연구)

  • Lee, Jung-Ho;Kim, Joong-Hoon;Kim, Hung-Soo;Kim, Eung-Seok;Jo, Deok-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.3
    • /
    • pp.195-206
    • /
    • 2004
  • One of the main factors which reduces the efficiency of a sewage treatment plant is the Inflow/Infiltration(Ⅰ/Ⅰ) in the sewer First we must calculate the quantity of Ⅰ/Ⅰ via the investigation of each sewer to establish the reduction plan of Ⅰ/Ⅰ. However, in Korea, we apply the results of a surveyed sample to the entire study area to establish the reduction plan of Ⅰ/Ⅰ. This methodology just considers the total Ⅰ/Ⅰ for the entire study area but it does not consider the quantity of Ⅰ/Ⅰ for the individual sewer systems. Therefore, we may need the model to consider the Ⅰ/Ⅰ in the individual sewer systems and we develop the model to calculate the Ⅰ/Ⅰ that happen in urban sewer systems. We estimate the Ⅰ/Ⅰ of individual systems by the developed model and the estimated Ⅰ/Ⅰ are utilized as the basic data for the establishment of Ⅰ/Ⅰ reduction plan. The observed Ⅰ/Ⅰ for the entire study area is distributed into the individual sewer systems according to their defect states. Here, the weights of defect elements are calculated using AHP(Analytic Hierarchy Process) and we perform the uncertainty analysis for considering the errors using MCS(Monte Carlo Simulation).

Problems of lake water management in Korea (한국의 호수 수질관리의 문제점)

  • 김범철;전만식;김윤희
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2003.10a
    • /
    • pp.105-126
    • /
    • 2003
  • In Korea most of annual rainfall is concentrated in several episodic heavy rains during the season of summer monsoon and typhoon. Because of uneven rainfall distribution many dams have been constructed in order to secure water supply in dry seasons. The Han River system has the most dams among Korean rivers, and the river is a series of dams now. Reservoirs need different strategy of water quality control from river water. Autochthonous organic matter and phosphorus should be the major target to be controlled in lakes. In this Paper some problems are discussed that makes efforts of water quality improvement ineffective in lakes of Korea, even after the substantial investment to wastewater treatment facilities.1) Phosphorus is the key factor controlling eutrophication of lakes and the reduction ofphosphors should be the major target of water treatment. However, water quality management strategy in Korea is still stream-oriented, and focused on BOD removal from sewage. Phosphorus removal efficiency remains as low as 10-30%, because biological treatment is adopted for both secondary treatment and advanced treatment. The standard for TP concentration of the sewage treatment plant effluent is 6 mgP/l in most of regions, and 2 mg/l in enforced region near metropolitan water intake point. TP in the effluents of sewage treatment plants are usually 1-2 mg/1, and most of plants meet the effluent regulation without a further phosphorus removal process. The generous TP standard for effluents discourages further efforts to improve phosphorus removal efficiency of sewage treatment. Considering that TP standard for the effluent is below 0.1 mg/l in some countries, it should be amended to below 0.1 mg/l in Korea, especially in the watershed of large lakes.2) Urban runoff and combined sewer overflow are not treated, even though their total loading into lakes can be comparable to municipal sewage discharges on dry days. Chemical coagulation and rapid settling might be the solution to urban runoff in regard of intermittent operation on only rainy days.3) Aggregated precipitation in Korea that is concentrated on several episodic heavyrains per year causes a large amount of nonpoint source pollution loading into lakes. It makes the treatment of nonpoint source discharge by methods of other countries of even rain pattern, such as retention pond or artificial wetland, impractical in Korea.4) The application rate of fertilizers in Korea is ten times as high as the average ofOECD countries. The total manure discharge from animal farming is thought to be over the capacity of soil treatment in Korea. Even though large portion of manure is composted for organic fertilizer, a lot of nutrients and organic matter emanates from organic compost. The reduction of application rate and discharge rate of phosphorus from agricultural fields should be encouraged by incentives and regulations.5) There is a lot of vegetable fields with high slopes in the upstream region of the HanRiver. Soil erosion is severe due to high slopes, and fertilizer is discharged in the form of adsorbed phosphorus on clay surface. The reduction of soil erosion in the upland area should be the major preventive policy for eutrophication. Uplands of high slope must be recovered to forest, and eroded gullies should be reformed into grass-buffered natural streams which are wider and resistant to bank erosion.

  • PDF

Effects of Vegetation on Pollutants and Carbon Absorption Capacity in LID Facilities (LID시설에서의 오염물질 및 탄소흡수능에 식생이 미치는 영향)

  • Hong, Jin;Kim, Yuhyeon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.115-122
    • /
    • 2022
  • As the impermeable area of soil increases due to urbanization, the water circulation system of the city is deteriorating. The existing guidelines for low impact development (LID) facilities installed to solve these water problems or in previous studies, engineering aspects are more prominent than landscaping aspects. This study attempted to present an engineering and landscaping model for reducing pollutants by identifying the effects of vegetation on rainfall outflows and pollutant reduction in bioretention and the economic aspects of planting. Based on the results of artificial rainfall monitoring at Jeonju Seogok Park and the literature on vegetation rainfall runoff and pollutant reduction performance, the best vegetation for reducing pollution compared to cost was Lythrum salicaria L and Salix gracilistyla Miq. was the best vegetation for carbon storage. If you insist to design plants with only these two plantation, there is no choice but to take risks such as biodiversity. Herbaceous plants such as Lythrum salicaria L can be replaced by death of the plants or pests if considered planting various plants. The initial planting cost could expensive, but it is also necessary to mix and plant Salix gracilistyla Miq, which are woody plants that are advantageous in terms of maintenance, according to the surrounding environment and conditions. Based on the conclusions drawn in this study, it can be a reference material when considering the reduction of pollution by species and carbon storage of vegetation in LID facilities.

Analysis of Runoff Reduction Effect of Flood Mitigation Policies based on Cost-Benefit Perspective (비용-편익을 고려한 홍수 대응 정책의 유출 저감 효과 분석)

  • Jee, Hee Won;Kim, Hyeonju;Seo, Seung Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.721-733
    • /
    • 2023
  • As the frequency of extreme rainfall events increase due to climate change, climate change adaptation measures have been proposed by the central and local governments. In order to reduce flood damage in urban areas, various flood response policies, such as low impact development techniques and enhancement of the capacity of rainwater drainage networks, have been proposed. When these policies are established, regional characteristics and policy-effectiveness from the cost-benefit perspective must be considered for the flood mitigation measures. In this study, capacity enhancement of rainwater pipe networks and low impact development techniques including green roof and permeable pavement techniques are selected. And the flood reduction effect of the target watershed, Gwanak campus of Seoul National University, was analyzed using SWMM model which is an urban runoff simulation model. In addition, along with the quantified urban flooding reduction outputs, construction and operation costs for various policy scenarios were calculated so that cost-benefit analyses were conducted to analyze the effectiveness of the applied policy scenarios. As a result of cost-benefit analysis, a policy that adopts both permeable pavement and rainwater pipe expansion was selected as the best cost-effective scenario for flood mitigation. The research methodology, proposed in this study, is expected to be utilized for decision-making in the planning stage for flood mitigation measures for each region.

A Study on Removal Efficiency and Applicability of Natural Type Road Non-point Pollutant Reduction Facilities (자연형 도로 비점오염저감시설의 저감효율 및 적용성 연구)

  • Lee, Sang Hyuk;Cho, Hye Jin;Kim, Lee Hyung
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.9-17
    • /
    • 2014
  • PURPOSES : The purpose of this study is to assess removal efficiency of non-point pollutants and applicability for non-point pollutant reduction facilities by conducting the demonstration project operation. METHODS : In order to analyze removal efficiency of non-point pollutants for facilities such as a grassed swale, a small constructed wetland, a free water surface wetland, a horizontal sub-surface flow wetland, and a sand filtration, the field data including specifications of facilities, rainfall, inflow and runoff rainfall effluent etc. was acquired after occurring rainfall events, and the acquired data was analyzed for removal efficiency rate to assess road non-point pollutants facilities using event mean concentration (EMC) and summation of load (SOL) methods. RESULTS : The results of analyzing rainfall effluent, non-point pollutant sources showed that total suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), chrome (Cr), zinc (Zn), and lead (Pb) can be removed through non-point pollutant reduction facilities by 60.3% ~ 100%. Especially removal efficiency of TSS, COD and BOD is relatively higher than removal efficiency of other non-point pollutant sources in all kind of non-point pollutant facilities. CONCLUSIONS : Based on the result of this study, even though natural type of non-point pollutant reduction facilities for roads occupy small areas comparing with drainage basin areas, most of non-point pollutant sources would be removed through the facilities.