• 제목/요약/키워드: runoff modeling

검색결과 274건 처리시간 0.021초

Development of Realtime Dam's Hydrologic Variables Prediction Model using Observed Data Assimilation and Reservoir Operation Techniques (관측자료 동화기법과 댐운영을 고려한 실시간 댐 수문량 예측모형 개발)

  • Lee, Byong Ju;Jung, Il-Won;Jung, Hyun-Sook;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • 제46권7호
    • /
    • pp.755-765
    • /
    • 2013
  • This study developed a real-time dam's hydrologic variables prediction model (DHVPM) and evaluated its performance for simulating historical dam inflow and outflow in the Chungju dam basin. The DHVPM consists of the Sejong University River Forecast (SURF) model for hydrologic modeling and an autoreservoir operation method (Auto ROM) for dam operation. SURF model is continuous rainfall-runoff model with data assimilation using an ensemble Kalman filter technique. The four extreme events including the maximum inflow of each year for 2006~2009 were selected to examine the performance of DHVPM. The statistical criteria, the relative error in peak flow, root mean square error, and model efficiency, demonstrated that DHVPM with data assimilation can simulate more close to observed inflow than those with no data assimilation at both 1-hour lead time, except the relative error in peak flow in 2007. Especially, DHVPM with data assimilation until 10-hour lead time reduced the biases of inflow forecast attributed to observed precipitation error. In conclusion, DHVPM with data assimilation can be useful to improve the accuracy of inflow forecast in the basin where real-time observed inflow are available.

Analysis of Hydrological Impact by Typhoon RUSA using Landsat Images and Hydrological Model (Landsat영상과 수문모형을 이용한 태풍 RUSA에 의한 수문영향 분석)

  • Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • 제38권5호
    • /
    • pp.391-399
    • /
    • 2005
  • The purpose of this study is to evaluate hydrological impact by the land cover change of typhoon damage. For the typhoon RUSA (rainfall 1,402 mm) occurred in 2002 (August $31\;{\sim}$ September 1), satellite images of Landsat 7 ETM+ of September 29, 2000 and Landsat 5 TM of September 11, 2002 were selected, and each land cover was classified for Namdae-cheon watershed $192.7km^2$ located in the middle-eastern part of Korea Peninsula. SCS unit hydrograph for watershed runoff and Muskingum for streamflow routing of WMS HEC-1 was adopted. 30m resolution DEM & hydrological soil group using 1:50,000 soil map were prepared. The model was calibrated using three available data of storm events of 1985 to 1988 based on 1985 land cover condition. To predict the streamflow change by damaged land cover condition, rainfall of 50 years to 500 years frequency were generated using 2nd quantile of Huff method. The damaged land cover condition treated as bare soil surface increased streamflow of $50.1\;m^3/sec$ for 50 years rainfall frequency and $67.6\;m^3/sec$ for 500 years rainfall frequency based on AMC-I condition. There may be some speedy treatment by the government for the next coming typhoon damage.

Estimating Groundwater Level Variation due to the Construction of a Large Borrow Site using MODFLOW Numerical Modeling (대규모 토취장 개발 예정 지역의 수치모델을 이용한 지하수위 변동 예측)

  • Ryu, Sanghun;Park, Joonhyeong;Kim, Gyoobum
    • Journal of the Korean GEO-environmental Society
    • /
    • 제13권10호
    • /
    • pp.15-23
    • /
    • 2012
  • A numerical model and field monitoring data are used to estimate a change in groundwater level at a borrow site, which will be constructed at the mountainous area with a large ground excavation in the study area, Hwaseong city. Lithologic data and hydraulic coefficients are collected at 9 boreholes and also groundwater levels are measured at these boreholes and existing wells in the study area. Additionally, groundwater recharge rate for the type of land cover is estimated using water budget analysis; 133.34mm/year for a mountainous area, 157.68mm/year for a farming area, 71.08mm/year for an urbanized area, and 26.06mm/year for a bedrock exposure area. The change in groundwater level in and around a borrow site is simulated with Modflow using these data. The result of a transient model indicates that a removal of high ground (over 40El.m) by an excavation will produce a decrease in groundwater levels, up to 1 m, around a borrow site in 10 years. It also explains that this ground excavation will bring about the decreases of 9.4% and 7.0% for groundwater recharge and surface runoff, respectively, which are the factors causing groundwater level's change. This study shows that it is required to construct the groundwater monitoring wells to observe the change of groundwater near a borrow site.

Univariate Analysis of Soil Moisture Time Series for a Hillslope Located in the KoFlux Gwangneung Supersite (광릉수목원 내 산지사면에서의 토양수분 시계열 자료의 단변량 분석)

  • Son, Mi-Na;Kim, Sang-Hyun;Kim, Do-Hoon;Lee, Dong-Ho;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • 제9권2호
    • /
    • pp.88-99
    • /
    • 2007
  • Soil moisture is one of the essential components in determining surface hydrological processes such as infiltration, surface runoff as well as meteorological, ecological and water quality responses at watershed scale. This paper discusses soil moisture transfer processes measured at hillslope scale in the Gwangneung forest catchment to understand and provide the basis of stochastic structures of soil moisture variation. Measured soil moisture series were modelled based upon the developed univariate model platform. The modeling consists of a series of procedures: pre-treatment of data, model structure investigation, selection of candidate models, parameter estimation and diagnostic checking. The spatial distribution of model is associated with topographic characteristics of the hillslope. The upslope area computed by the multiple flow direction algorithm and the local slope are found to be effective parameters to explain the distribution of the model structure. This study enables us to identify the key factors affecting the soil moisture distribution and to ultimately construct a realistic soil moisture map in a complex landscape such as the Gwangneung Supersite.

Analysis of Inundation Characteristics for EAP of Highway in Urban Stream - Dongbu Highway in Jungrang Stream - (도시하천도로의 EAP수립을 위한 침수특성분석 - 중랑천 동부간선도로를 중심으로 -)

  • Lee, Jong-Ta;Jeon, Won-Jun;Hur, Sung-Chul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제6권3호
    • /
    • pp.69-76
    • /
    • 2006
  • An hydraulic and hydrologic analysis procedure was proposed to reduce the inundation damage of highway in urban stream, that could contribute the EAP and Traffic control planning of Dongbu highway in the Jungrang stream basin which is one of the representative urban area in Korea. We performed the HEC-HMS runoff analysis, and the UNET unsteady flow modeling to decide the inundation reaches and their characteristics. The high inundation risk areas were of Emoon railway bridge and the Wollueng bridge, which are inundated in the case of 10 year and 20 year frequency flood respectively. We also analyze the inundation characteristics under the various conditions of the accumulation rainfall and the duration. Flood elevation at the Wolgye-1 bridge exceed over Risk Flood Water Level(EL.17.84 m) when the accumulation rainfall is over 250 mm and shorter duration than 7 hr. When neglecting backwater effect from the Han river, inundation risk are highly at the reach C2(Wolgye-1 br. ${\sim}$Jungrang br., left bank), C1(Wolgye-1 br. ${\sim}$Jungrang br., right bank), D(Jungrang br. ${\sim}$Gunja br.) in order, but when consider the effect, the inundation risk are higher than the others at the reach D2(Jungrang br. ${\sim}$Gunja br., left bank) and E(Gunja br. ${\sim}$Yongbi br.), which are located downstream near confluence.

A Hydrometeorological Time Series Analysis of Geum River Watershed with GIS Data Considering Climate Change (기후변화를 고려한 GIS 자료 기반의 금강유역 수문기상시계열 특성 분석)

  • Park, Jin-Hyeog;Lee, Geun-Sang;Yang, Jeong-Seok;Kim, Sea-Won
    • Spatial Information Research
    • /
    • 제20권3호
    • /
    • pp.39-50
    • /
    • 2012
  • The objective of this study is the quantitative analysis of climate change effects by performing several statistical analyses with hydrometeorological data sets for past 30 years in Geum river watershed. Temperature, precipitation, relative humidity data sets were collected from eight observation stations for 37 years(1973~2009) in Geum river watershed. River level data was collected from Gongju and Gyuam gauge stations for 36 years(1973~2008) considering rating curve credibility problems and future long-term runoff modeling. Annual and seasonal year-to-year variation of hydrometeorological components were analyzed by calculating the average, standard deviation, skewness, and coefficient of variation. The results show precipitation has the strongest variability. Run test, Turning point test, and Anderson Exact test were performed to check if there is randomness in the data sets. Temperature and precipitation data have randomness and relative humidity and river level data have regularity. Groundwater level data has both aspects(randomness and regularity). Linear regression and Mann-Kendal test were performed for trend test. Temperature is increasing yearly and seasonally and precipitation is increasing in summer. Relative humidity is obviously decreasing. The results of this study can be used for the evaluation of the effects of climate change on water resources and the establishment of future water resources management technique development plan.

The development of water circulation model based on quasi-realtime hydrological data for drought monitoring (수문학적 가뭄 모니터링을 위한 실적자료 기반 물순환 모델 개발)

  • Kim, Jin-Young;Kim, Jin-Guk;Kim, Jang-Gyeng;Chun, Gun-il;Kang, Shin-uk;Lee, Jeong-Ju;Nam, Woo-Sung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • 제53권8호
    • /
    • pp.569-582
    • /
    • 2020
  • Recently, Korea has faced a change in the pattern of water use due to urbanization, which has caused difficulties in understanding the rainfall-runoff process and optimizing the allocation of available water resources. In this perspective, spatially downscaled analysis of the water balance is required for the efficient operation of water resources in the National Water Management Plan and the River Basin Water Resource Management Plan. However, the existing water balance analysis does not fully consider water circulation and availability in the basin, thus, the obtained results provide limited information in terms of decision making. This study aims at developing a novel water circulation analysis model that is designed to support a quasi-real-time assessment of water availability along the river. The water circulation model proposed in this study improved the problems that appear in the existing water balance analysis. More importantly, the results showed a significant improvement over the existing model, especially in the low flow simulation. The proposed modeling framework is expected to provide primary information for more realistic hydrological drought monitoring and drought countermeasures by providing streamflow information in quasi-real-time through a more accurate natural flow estimation approach with highly complex network.

Use of a Structural Equation Model for the Long-term Evaluation of Hydrological Cycles in the Seolmacheon and Cheongmicheon Basin (구조방정식모형을 이용한 설마천 유역과 청미천 유역의 장기 수문순환 평가)

  • Kim, Soeun;Yoo, Chulsang;Lee, Munseok;Song, Sunguk
    • Journal of Wetlands Research
    • /
    • 제23권4호
    • /
    • pp.277-286
    • /
    • 2021
  • This study compares the long-term hydrological cycles of the Seolmacheon and Cheongmicheon basin by applying the structural equation model (SEM). These two basins are found different especially in their land-use pattern. Both basins have the actual evapotranspiration data measured by the eddy-covariance method as well as the rainfall and runoff data. The length of the data considered in this study is nine years from 2010 to 2018. The structure of the SEM is determined by considering the correlations among the data as well as the general knowledge on the hydrological cycle. As a result, a total of three SEMs are applied sequentially to analyze their fittings. As irony would have it, two basins are found to be similar in the application of one SEM, but different in the application of another. Especially, when considering the feedback process between precipitation and evapotranspiration, two basins are found to be very different. That is, the feedback process between precipitation and evapotranspiration is found to be significant in the Cheongmicheon basin where the portion of agricultural area (i.e., paddy) is more than 40%.

Numerical Modeling for Region of Freshwater Influence by Han River Discharge in the Yeomha Channel, Gyeonggi Bay (경기만 염하수로에서의 한강 유량에 따른 담수 영향범위 수치모델링)

  • Lee, Hye Min;Song, Jin Il;Kim, Jong Wook;Choi, Jae Yoon;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제33권4호
    • /
    • pp.148-159
    • /
    • 2021
  • This study estimates the region of freshwater influence (ROFI) by Han River discharge in the Yeomha channel, Gyeonggi Bay. A 3-D numerical model, which is validated for reproducibility of variation in current velocity and salinity, is applied in Gyeonggi Bay. Distance of freshwater influence (DOFI) is defined as the distance from the entrance of Yeomha channel to the point where surface salinity is 28 psu. Model scenarios were constructed by dividing the Han River discharge into 10 categories (200~10,000 m3/s). The relation equation between freshwater discharge and DOFI was calculated based on performing a non-linear regression analysis. ROFI in Yeomha channel expands from the southern sea area of Ganghwa-do to the northern sea area of Yeongheung-do as the intensity of Han River discharge increases. The discharge and DOFI are a proportional relationship, and the increase rate of DOFI gradually decreases as discharge increases. Based on the relation equation calculated in this study, DOFI in the Yeomha channel can be estimated through the monthly mean Han River discharge. Accordingly, it will be possible to respond and predict problems related to damage to water quality and ecology due to rapid freshwater runoff.

Submarine Discharge of Fresh Groundwater Through the Coastal Area of Korea Peninsula: Importance as a Future Water Resource (한반도 주변 연안 해저를 통한 담지하수의 유출: 미래 수자원으로서의 중요성)

  • Hwang, Dong-Woon;Kim, Gue-Buem;Lee, Jae-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • 제15권4호
    • /
    • pp.192-202
    • /
    • 2010
  • Submarine groundwater discharge (SGD) has been recognized as a provider for freshwater, nutrients, and dissolved constituents from continents to the oceans and paid more attention with regard to the mass balance of water or dissolved constituents on local and global scales. The submarine discharge of fresh groundwater (fresh SGD) through seepage or springs in coastal ocean may be especially important in aspects of water resource and marine environment managements in the future. Based on the worldwide compilations of observed fresh SGD, our review reveals that fresh SGD occurs in various marine environments along most shoreline of the world and the global estimates of fresh SGD were approximately 0.01-17% of surface runoff. In addition, the input of fresh SGD calculated and investigated in this study were about 50%, 57%, 89%, and 420% of total river discharge in Jeju Island, Yeongil Bay, Masan Bay, and Yeoja Bay, respectively. These inputs from fresh SGD along the shoreline of Korea Peninsula are much higher than those of the whole world, greatly vary with the region. However, since these estimates are based on the water balance method mainly used in coastal ocean, we have to perform continuous monitoring of various parameters, such as precipitation, tide, evapotanspiration and water residence time, which have an impact on the water balance in a lot of areas for evaluating the precise input of fresh SGD. In addition, since the method estimating the input of fresh SGD has brought up many problems, it is required to make an intercomparison between various methods such as hydrogeological assumption, numerical modeling, and seepage meter.