• Title/Summary/Keyword: runoff loading

Search Result 168, Processing Time 0.023 seconds

Water Balance and Nutrient Losses of Paddy Fields Irrigated from a Pumping Station (양수장지구 구획논 물수지와 영양염류 유출부하)

  • Choi, Jin-Kyu;Koo, Ja-Woong;Son, Jae-Gwon;Cho, Jae-Young;Yoon, Kwang-Sik;Han, Kuk-Heon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.394-398
    • /
    • 2001
  • The study was carried out to investigate the water balance and losses of nutrients from paddy fields during cropping period. The size of paddy fields was 95 ha and the fields were irrigated from a pumping station. The runoff loading was the highest in June because of the high concentrations of nutrients due to applied fertilizer. When the runoff losses of nutrients were compared to applied chemical fertilizer, it was found that 39.1 % to 42.5 % of nitrogen lost via runoff while runoff losses of phosphorus account for 6.3 % to 8.0 % of the total applied amount during cropping period. When the ratio was calculated between nutrients losses by infiltration and the applied of chemical fertilizer, two year results showed 9.1 % to 10.7 % for nitrogen and 0.2 % for phosphorus, respectively.

  • PDF

Estimating Unit Load of Non-Point Source Pollutants for Landuse Types in Anseongchun Watershed (안성천 유역의 토지이용별 비점오염원 원단위 산정)

  • Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.1026-1033
    • /
    • 2009
  • In this study, we computed the unit load of nonpoint source for the forest, agricultural, and urban representative region in Anseongchun watershed. In addition, Flow-weighted mean concentration (FWMC) that well represents runoff characteristics of storm water during rainfall, was calculated, and runoff pollutants loading was also examined. FWMCs of 1st rainfall, which runoff coefficient was high, had a tendency higher than those of 2nd rainfall. Based on landuse results, pollutant concentration of the non-urban such as forest and agricultural regions was higher than that of urban region. In case of BOD, runoff pollutants loading was calculated as 1,395, 1,623, 2,268kg/d in 1st rainfall for forest, agricultural, and urban regions, respectively, while runoff loading of 2nd rainfall was 503kg/d in forest), 512kg/d in agricultural, and 898kg/d in urban. By landuses, unit load of the urban as 72.7kg/ha/yr was 12 times higher than that of the agricultural as 6.5kg/ha/yr, and 8 times higher than that of the forest as 9.5kg/ha/yr.

A Study of Comparison of outflow characteristics of pollutants by rainfall event of forest area near Juam lake basin (주암호 유역의 강우사상에 따른 오염물질의 유출특성)

  • Kim, Nam-Joung;Shin, Dae-Yewn
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.4
    • /
    • pp.87-104
    • /
    • 2007
  • The objective of this study is to estimate the load of pollutants caused from the forest area among non-point pollutants within the Juam lake. The surveyed forest area was classified into broad-leaved, conifer, mixed and herbage area by forest tree type. Water quality and flux were investigated under rainfall and non-rainfall, respectively. Then, pollutant loading was evaluated by using the values of unit pollutant loading factor of each point and area of forest zone. Water quality analysis results of runoff by forest tree types were as follows. - Annual BOD, $COD_{Mn}\;and\;COD_{Cr}$ concentration of runoff in conifer area was high, and particle and biological recalcitrant compounds were flowed highly. - SS, T-N and T-P concentration was high in runoff from broad-leaved area, and biological degradable compounds was flowed. - Water quality of water from valley was maintained good under non-rainfall and could be utilized as fresh drinking water. Through water quality standard investigation, a countermeasure establishment was necessary to secure a good quality of drinking water - BOD, $COD_{Mn},\;and\;COD_{Cr}$ concentration of Bo-sung river was higher 1.5 times than other 2 streams, and because of high T-N, and T-P concentration in Songgwang stream, the management for this was necessary.

Application of BASINS for the water quality prediction in rural watersheds - on HSPF model - (농촌유역의 수질예측을 위한 BASINS의 적용 - HSPF모형을 중심으로 -)

  • Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.403-407
    • /
    • 2001
  • For the water quality management of stream and lake, it is important to estimate and control nonpoint source loading to meet the water quality standard. So, integrated watershed management is required. BASINS is a multipurpose environmental analysis system for use by regional, state, and local agencies in performing watershed and water quality based studies. BASINS was developed by the USEPA to facilitate examination of environmental information, to support analysis of environmental systems and to provide a framework for examining management alternatives. BASINS contains HSPF which is one of the watershed runoff model. By using HSPF, nonpoint source loading from upper stream watershed was estimated. As a result, the simulated runoff was in a good agreement with the observed data and indicated reasonable applicability for whole watershed.

  • PDF

Evaluation of Runoff and Pollutant Loads using L-THIA 2012 Runoff and Pollutant Auto-calibration Module and Ranking of Pollutant Loads Potential (L-THIA 2012 유출 및 수질 자동 보정 모듈을 이용한 유출/비점부하량 산정 및 비점오염 부하량 포텐셜 등급화)

  • Jang, Chunhwa;Kum, Donghyuk;Ha, Junsoo;Kim, Kyoung-Soon;Kang, Dong Han;Kim, Keuk-Tai;Shin, Dong Suk;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.184-195
    • /
    • 2013
  • Urbanization from agricultural/forest areas has been causing increased runoff and pollutant loads from it. Thus, numerous models have been developed to estimate NPS loading from urban area and Long-Term Hydrologic Impact Analysis (L-THIA) model has been used to evaluate effects of landuse changes on runoff and pollutant loads. However, the L-THIA model could not consider rainfall intensity in runoff evaluation. Therefore, the L-THIA model, capable of simulating runoff using 10-minute rainfall data, was applied to the study areas for evaluation of estimated runoff and NPS. The estimated Nash-Sutcliffe coefficient (NSE) values were over 0.6 for runoff, BOD, TN, and TP for most sites and watershed. The calibrated model was further extended to other counties for pollutant load potential evaluation. Pollutant load potential maps were developed and target areas were identified. As shown in this study, the L-THIA 2012 can be used for evaluation runoff and pollutant loads with limited data sets and its estimation could be used in identifying pollutant load hot spot areas for implementation of site-specific Best Management Practices.

APPLICATION AND EVALUATION OF THE GLEAMS MODEL TO A CATTLE GRAZING PASTURE FIELD IN NORTH ALABAMA

  • Kang, M. S.;P. prem, P.-Prem;Yoo, K. H.;Im, Sang-Jun
    • Water Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.55-68
    • /
    • 2004
  • The GLEAMS (Groundwater Loading Effects of Agricultural Management System, version 3.0) water quality model was used to predict hydrology and water quality and to evaluate the effects of soil types from a cattle-grazed pasture field of Bermuda-Rye grass rotation with poultry litter application as a fertilizer in North Alabama. The model was applied and evaluated by using four years (1999-2002) of field-measured data to compare the simulated results for the 2.71- ha Summerford watershed. $R^2$ values between observed and simulated runoff, sediment yields, TN, and TP were 0.91, 0.86, 0.95, and 0.69, respectively. EI (Efficiency Index) of these parameters were 0.86, 0.67, 0.70, and 0.48, respectively. The statistical parameters indicated that GLEAMS provided a reasonable estimation of the runoff, sediment yield, and nutrient losses at the studied watershed. The soil infiltration rates were compared with the rainfall events. Only high intensity rainfall events generated runoff from the watershed. The measured and predicted infiltration rates were higher during dry soil conditions than wet soil conditions. The ratio of runoff to precipitation was ranging from 2.2% to 8.8% with average of 4.3%. This shows that the project site had high infiltration and evapotranspiration which generated the low runoff. The ratio of runoff to precipitation according to soil types by the GLEAMS model appeared that Sa (Sequatchie fine sandy loam) soil type was higher and Wc (Waynesboro fine sandy loam, severely eroded rolling phase) soil type relatively lower than the weighted average of the soil types in the watershed. The model under-predicted runoff, sediment yields, TN, and TP in Wb (Waynesboro fine sandy loam, eroded undulating phase) and Wc soil types. General tendency of the predicted data was similar for all soil types. The model predicted the highest runoff in Sa soil type by 105% of the weighted average and the lowest runoff in Wc soil type by 87% of the weighted average

  • PDF

Evaluation of Pollutants Concentrations and Runoff Characteristics in Highway Rest Area (국내 고속도로 휴게소지역 비점오염원 유출특성 분석)

  • Kim, Jeong-Hyun;Kang, Hee-Man;Ko, Seok-Oh
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.131-137
    • /
    • 2010
  • The stormwater runoff from rest areas in highways are known as more polluted compared to highways because of more vehicle activities. This study is performed to find pollutant characteristics in the rest areas in the magnitude of statistical pollutant concentrations during storms. Washoff characteristics of pollutants from rest areas by monitoring of rainfall, runoff rate and runoff samples were evaluated. High concentrations of pollutants in runoff were observed at the beginning of runoff and rapid decrease thereafter, indicating that first-flush effects are clearly occurred. Event Mean Concentrations(EMCs) of TSS, COD, TN, and TP are estimated to be in the range of 31.04-127.11mg/L, 35.5-369.5mg/L, 2.62-9.86 mg/L, and 0.53-1.96mg/L, respectively. Heavy metals in runoff showed relatively high values, possibly due to the abrasion of brake pad or tire while cars are slowly moving for parking. EMCs of total Pb, total Cu, and total Ni are in the range of $1206-16293{\mu}g/L$, $237-7906{\mu}g/L$, and $53-6372{\mu}g/L$, respectively. Pollutant loading per rest area calculated by using EMC, flowrate and target area is also described for each pollutant.

Characterization of Combined Sewer Overflows from a Small Urban Watershed and Determination of Optimum Detention Volume (소규모 도시유역 합류식 하수관거 월류수 특성화 및 최적 저류지 용량 결정)

  • Jo, Deokjun;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.314-320
    • /
    • 2006
  • Diffuse pollution from an urban area contributes to the significant pollution loading to a receiving water body. In this paper, rainfall runoffs from an urban basin with combined sewer systems located in the city of Daejeon were monitored to measure the rainfall runoff discharge rates and pollutant concentrations. Strong first flush effects were observed for all monitored rainfall runoffs. The first flush effects were closely related to rainfall intensity, while suspended solids were closely related to pollutant constituents. The observed averaged Event Mean Concentrations (EMCs) of Combined Sewer Overflows (CSOs) were 536.1 mg SS/L, 467.7 mg CODcr/L, 142.7 mg BOD/L, 16.5 mg TN/L, and 13.5 mg TP/L. Storage volumes for containing the first flush to improve water quality of the receiving stream can be estimated based on suspended solid concentration. In this study, retainment of the first flush equivalent to 5mm of precipitation could reduce diffuse pollution loading induced by CSOs to a receiving water body by up to 80% of suspended solid loading.

Assessing Future Climate Change Impact on Hydrologic and Water Quality Components in Nakdong River Basin (미래 기후변화에 따른 낙동강 유역의 수문·수질 변화)

  • Jang, Jae Ho;Ahn, Jong Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1121-1130
    • /
    • 2012
  • Projected changes and their impacts on water quality are simulated in response to climate change stressors. CGHR (T63) simulation on the A1B scenario is converted to regional scale data using a statistical down-scaling method and applied to SWAT model to assess water quality impacts in Nakdong River basin. The results demonstrate that rainfall-runoff and pollutant loading in the future (2011~2100) will clearly increase as compared to the last 30-year average. The rate of pollutant loading increase is expected to continue its acceleration until 2040s. Runoff also shows similar patterns to the precipitation, increasing by 60%. Accordingly, the runoff increase results in escalation of pollutant loading by 35~45% for TSS and 5~20% for T-P. This phenomenon is more pronounced in the upper basin during winter and spring season.

Quantitative Estimation of Nonpoint Source Load by BASINS/HSPF (BASINS/HSPF 모형을 활용한 비점오염부하의 정량적 평가)

  • Lee, Jae-Woon;Kwon, Hun-Gak;Yi, Youn-Jeong;Yoon, Jong-Su;Han, Kun-Yeun;Cheon, Se-Uk
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.965-975
    • /
    • 2012
  • Loading of NPS pollutant was valued through simulation by using BASINS/HSPF model which can simulate runoff volume in rainfall by time. For the verification of the model, it was analyzed the scatter diagram of the simulation value and measure value of water quality and runoff volume in Dongcheon estuary. Using the built model, a study on the time-variant characteristics of runoff and water quality was simulated by being classified into four cases. The result showed the simulation value was nearly same as that of the measured runoff. In the result of fit level test for measured value and simulated value, correlation of runoff volume was computed high by average 0.86 and in the water quality items, fit level of simulation and measurements was high by BOD 0.82, T-N 0.85 and T-P 0.79.