• Title/Summary/Keyword: runner balance

Search Result 50, Processing Time 0.018 seconds

Optimization of Processing on Filling Balance of the HR3P Mold Structure (균형충전을 위한 HR3P 금형 구조에서의 공정의 최적화)

  • Kwon, Youn-Suk;Jeong, Yeong-Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.98-102
    • /
    • 2009
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance has been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and polymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system. The filling imbalance was decreased up to result range of $3{\leq}DFI{\leq}8(%)$ by using a new runner system for balanced filling.

An Experimental Study for the Filling Balance of the Family Mold (Family 금형의 충전 균형을 위한 실험적 연구)

  • Park H. P.;Cha B. S.;Rhee B. O.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.47-56
    • /
    • 2006
  • It is well known that the family-mold has an advantage to reduce the cost for production and mold. However, defects are frequently occurred by over packing the smaller volume cavity during molding, especially when the family-mold has a volumetric difference between two cavities. In this study, the cavity-filling imbalance was confirmed by the temperature and the pressure sensors, and a variable-runner system was developed for balancing the cavity-filling. Experiments of balancing the cavity filling was carried out in the family-mold with the variable-runner system, and balancing the cavity-filling was confirmed by changing the cross-sectional area of a runner in the variable-runner system with the temperature and pressure sensors. The influence of the injection speed to the balancing-capability of the variable-runner system was also examined in the experiment.

On the new mold structure with multi-point gate for filling-balance mold (사출성형시 불균형 충전에 관한 다구찌 실험계획법을 이용한 성형공정의 최적화)

  • Hong, Youn-Suk;Han, Dong-Hyup;Jeong, Yeong Deug
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.13-16
    • /
    • 2007
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance have been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and polymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system.

  • PDF

A New Runner System Melt-Buffer for Filling Balance in Injection Mold (사출금형에서 균형충전을 위한 새로운 러너시스템 멜트버퍼)

  • Jeong, Y.D.;Jang, M.K.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.122-127
    • /
    • 2009
  • The injection mold with multi-cavity is essential for mass production of plastic products. Multi-cavity molds are designed to geometrically balanced runner system to uniformly fill to each cavity. However, despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed in injection molding. To solve these problems, many studies such as Melt Flipper, RC Pin, and others have been presented. The results of these studies have been an effect on filling balances in multi-cavity molds. But, those have had a limitation that additional insert parts must have existed in the mold. In this study, a new runner system is suggested for filling balance between cavity to cavity using "Melt-Buffer" with simple change of runner shape. A series of simulation to confirm feasibility of Melt-Buffer's effects was conducted using injection molding CAE program. Also, a series of injection molding experiment was conducted using plastic materials such as ABS and PP. As results of this study, feasibilities of filling balances by Melt-Buffer were confirmed.

Flow Analysis to Determine Runner Balance in Family Injection Molding (훼밀리 몰드 성형에서 러너밸런스 결정을 위한 유동해석)

  • 김용조
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.64-70
    • /
    • 1999
  • Family injection molding of plastic is widely used to enhance productivity. Runners for molded products in fami-ly injection molding have to be balanced so that each of the producs is filled completely at the same time,. In this study computer simulations were performed to determine balanced circular section runners in family injection molding with two cavities where each of he cavity shapes is like a case. It was found from the computer simula-tions that runner balance could be fulfilled only by modifying runner diameters. But in order to get more quality molded products other process factors such as flow length flow resistance shapes of products and etc, should be taken in to consideration for the design of a family injection molding process.

  • PDF

A study on the motorcycle lear cowl injection molding by CAE analysis (CAE 해석을 이용한 오토바이 리어카울 사출성형에 관한 연구)

  • Sung, Si-Myung;Jung, Sang-Jun
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.34-39
    • /
    • 2019
  • In this paper, in order to improve the formability and quality of the injection molded parts in the molds for molding the motorcycle rear cowl injection molded parts with different volumes at the same time, the flow of the molded parts is changed through the injection molding CAE analysis by changing the gate position, runner size and position. It is to find the optimum gate position, the diameter of the runner and the position where the balance is equal. The molded article formed by the optimization resulted in the uniformity of the molten resin at the same time at the corner of the product, thereby maintaining the flow balance favorable for mass production at lower injection pressure.

The Filling Balance of LDPE/ABS/PA6,6 Resin in Variable-Runner-System (가변러너시스템에서 LDPE/ABS/PA6,6 수지의 충전균형)

  • Park, H.P.;Cha, B.S.;Kang, J.K.;Rhee, B.O.
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.641-647
    • /
    • 2006
  • During the injection molding process an excessive packing can occur in the smaller volume cavity because of volumetric difference of the family-mold. It causes warpage by increased residual stress in the product and flesh by over packing. In this study, we used a variable-runner system for the filling balance of the cavities by changing the cross-sectional area of a runner, and confirmed the filling imbalance by temperature and pressure sensors. We carried out experiments to examine the influence of types of resins such as LDPE/ABS/PA6,6 on the filling balancing of the system, in order to help mold designers, who can easily adopt the variable-runner system to their design. We also examined filling imbalance in the system with CAE analysis.

Development of New Runner System for Filling Balance in Multi Cavity Injection Mold (다수 캐비티 사출금형에 적용되는 새로운 균형 충전용 러너 시스템 개발)

  • Jeong Y. D.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.42-46
    • /
    • 2006
  • For mass production, usually injection mold has multi-cavity which is filled through geometrical balanced runner system. Despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed. These filling imbalances are one of the most significant factors to affect quality of plastic parts. Filling imbalances are results from non-symmetrical shear rate distribution within melt when it flows through tile runner system. It has been possible to decrease filling imbalance by optimizing processing conditions, but it has not completely eliminated this phenomenon during injection molding processing. This paper presents a solution for these filling imbalances by using Runner Core pin (RC pin). The Runner Core pin which is developed in this study creates a symmetrical shear distribution within runner. As a result of using Runner Core pin, a remarkable improvement in reducing filling imbalances was confirmed.

Development of Runner System for Filling Balance in Multi Cavity Injection Mold (다수 캐비티 사출금형에서 균형 충전용 러너 시스템 개발)

  • Jeong Y. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.13-16
    • /
    • 2005
  • For mass production, usually injection mold has multi-cavity which is filled through geometrical balanced runner system. Despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed. These filing imbalances are one of the most significant factors to affect quality of plastic parts when molding plastic parts in multi-cavity injection mold. Filling imbalances are results from non-symmetrical shear rate distribution within melt as it flows through the runner system. It has been possible to decrease filling imbalance by optimizing processing conditions, but it has not completely eliminated this phenomenon during injection molding processing. This paper presents a solution of these filling imbalances through using 'runner core pin'. The runner core pin which is developed in this study creates a symmetrical shear distribution within runner. As a result of using runner core pin, a remarkable improvement in reducing filling imbalance was confirmed.

  • PDF

A Theoretical Study for the Filling Balance of the Family Mold Using Variable-Runner System (가변 러너 시스템을 이용한 패밀리 금형의 충전밸런스에 관한 이론적 연구)

  • Choi, Kwon-Il;Park, Hyung-Pil;Cha, Baeg-Soon;Rhee, Byung-Ohk;Koo, Bon-Heung
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.275-278
    • /
    • 2007
  • In family mold, defects are frequently occurred by an excessive packing the smaller volume cavity during molding. Although runner size could be optimized by CAE analysis or experimental data, the filling imbalance is hardly avoided in the actual injection molding process by various means. Before this study, we developed a variable-runner system for balancing the cavity-filling for three resins (ABS, LDPE, and PA66) in the family-mold, and examined the effect of cross-sectional area reduction of a runner in the system. In this study, we examined the conditions of the pressure and temperature in the system with a CAE analysis. We also analyzed the influence of the rheological characteristic of resins to the balancing-capability of the system in order to help mold designers easily adopt the variable-runner system to their design.

  • PDF