• Title/Summary/Keyword: rumen

Search Result 1,139, Processing Time 0.026 seconds

A STUDY ON NUTRITIONAL CHARACTERISTICS OF RICE STRAW IN CHINA

  • Tingxian, X.;Rejun, F.;Zhiliang, T.;Leihua, H.;Huiping, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.2
    • /
    • pp.291-300
    • /
    • 1993
  • The agronomic, morphologic and nutritive measurements were determined for ten varieties of the early-, medium- and late- maturing rice from five types of soil in south of China. The results are shown that (1) The higher contents of neutral detergent fibre (NDF), cellulose (CEL), hemicellulose (HC) and lignin (LIG), but lower crude protein (CP) and neutral detergent solubles (NDS) contents were noted for the whole plant of rice straw during maturation; (2) As far as the feed nutritive value, segments (S) is highest, then leaf blades (LB), leaf sheaths (LS) lowest. However, LB and LS are constituted about 75% of whole plant, the nutritive value of rice straw is depended upon the nutritive quality of LB and LS; (3) The dry matter disappearances (DMD) values of different spots of rice straw are different, the eary-maturing highest, then the medium; the late- lowest; (4) The DMD value of different fractions is different, S highest, then LB, LS lowest; (5) The different retention time in rumen, the DMD value of rice straw is different. As time following, the DMD value increased gradually, during 48-72 h, the DMD value achieves close to highest; (6) The grain yield (r = -0.91), plant height (r = -0.87) and full-filling grain percent (r = -0.75) are correlated negatively with DMD value, but the leaf/stem (r = 0.59) and the proportion of stem (r = 0.58) are correlated positively with DMD value. The relations between chemical compositions and DMD value are: Early-: DMD = 7.372 + 0.055 DM - 0.532 CP - 2.487 NDF + 1.143 ADF + 0.214 CEL + 1.456 HC + 0.718 LIG (r = 0.61). Medium-: DMD = 333.927 + 2.026 DM - 0.224 CP - 4.602 NDF + 4.524 ADF + 0.149 CEL + 2.923 HC + 0.035 LIG (r = 0.79). Late-: DMD = 133.284 + 0.282 DM - 3.455 CP - 22.185 NDF + 24.267 ADF + 0.316 CEL - 23.288 HC + 0.945 LIG (r = 0.79). Therefore, it is possible to predict the nutritive value of rice straw on the basis of the agronomic, morphologic measurements and chemical compositions and the relationship with DMD value.

Influence of Supplementing Dairy Cows Grazing on Pasture with Feeds Rich in Linoleic Acid on Milk Fat Conjugated Linoleic Acid (CLA) Content

  • Khanal, R.C.;Dhiman, T.R.;Boman, R.L.;McMahon, D.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1374-1388
    • /
    • 2007
  • Three experiments were conducted to investigate the hypothesis that cows grazing on pasture produce the highest proportion of c-9 t-11 CLA in milk fat and no further increase can be achieved through supplementation of diets rich in linoleic acid, such as full-fat extruded soybeans or soybean oil. In experiment 1, 18 lactating Holstein cows were used in a randomized complete block design with measurements made from wk 4 to 6 of the experiment. In experiment 2, three cannulated lactating Holstein cows were used in a $3{\times}3$ Latin square design. Each period was 4 wk with measurements made in the final wk of each period. Cows in both experiments were assigned at random to treatments: a, conventional total mixed ration (TMR); b, pasture (PS); or c, PS supplemented with 2.5 kg/cow per day of full-fat extruded soybeans (PES). In both experiments, feed intake, milk yield, milk composition, and fatty acid profile of milk and blood serum were measured, along with fatty acid composition of bacteria harvested from rumen digesta in experiment 2. In experiment 3, 10 cows which had continuously grazed a pasture for six weeks were assigned to two groups, with one group (n = 5) on pasture diet alone (PS) and the other group (n = 5) supplemented with 452 g of soy oil/cow per day for 7 d (OIL). In experiment 1, cows in PS treatment produced 350% more c-9, t-11 CLA compared with cows in TMR treatment (1.70 vs. 0.5% of fat), with no further increase for cows in PES treatment (1.50% of fat). Serum c-9, t-11 CLA increased by 233% in PS treatment compared with TMR treatment (0.21 vs. 0.09% of fat) with no further increase for cows in PES treatment (0.18% of fat). In experiment 2, cows in PS treatment produced 300% more c-9 t-11 CLA in their milk fat compared with cows in TMR treatment (1.77 vs. 0.59% of fat), but no further increase for cows in PES treatment (1.84% of fat) was observed. Serum c-9, t-11 CLA increased by 250% for cows in PS treatment compared with cows in TMR treatment (0.27 vs. 0.11% of fat), with no further increase for cows in PES treatment (0.31% of fat). The c-9, t-11 CLA content of ruminal bacteria for cows in PS treatment was 200% or more of TMR treatment, but no further increase in bacterial c-9, t-11 CLA for cows in PES treatment was observed. Supplementation of soy oil in experiment 3 also did not increase the c-9 t-11 CLA content of milk fat compared with cows fed a full pasture diet (1.60 vs. 1.54% of fat). Based on these findings, it was concluded that supplementing with feeds rich in linoleic acid, such as full-fat extruded soybeans or an equivalent amount of soy oil, to cows grazing perennial ryegrass pasture may not increase milk fat c-9 t-11 CLA contents.

Effect of sugar content on fermentation characteristics and in vitro digestibility of whole crop wheat silage

  • Song, Tae Hwa;Oh, Young Jin;Park, Jong Ho;Kang, Chon Sik;Cheong, Young Keun;Son, Jea Han;Park, Jong Chul;Kim, Yang Kil;Kim, Kyong Ho;Kim, Bo Kyeong;Park, Tae Il
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.282-282
    • /
    • 2017
  • The many factors such as sugar content, moisture, type of bacteria which predominate, buffering capacity, packing and sealing are known to be associated with silage fermentation quality. Among the sugar content are particularly important, because effective silage ensiling relies on the fermentation of sugar content to lactic acid by lactic acid bacteria. Sugar content is also known to affect the protein utilization of rumen. This study was conducted to observe the effect of water soluble carbohydrates on fermentation characteristics and in vitro digestibility of whole crop wheat silage. This experiment was used standard cultivars (Cheongwoo, Hordeum balgare L) and solid breeding line of whole crop wheat. The materials harvested at the 30 after heading day and chopped for making silage, and using this silage carried out in vitro digestibility for 6, 12, 24 and 48 hours. For the feed value, crude protein, NDF, ADF contents showed slightly higher than the before ensiling and TDN contents were slightly lower compared to the before ensiling, but did not show the significantly different. For the sugar contents, fructose and glucose contents were decreased in the after ensiling compared to the before ensiling, there were more reduced at the containing high sugar content wheat. The pH value was lower at containing high sugar content wheat. lactic acid content was significantly higher at the containing high sugar content wheat. Therefore, there was profitable to the production of high quality wheat silage at the higher the sugar content. In in vitro digestibility test, containing high sugar content HW34line showed significantly higher dry matter digestibility at 6 and 12 hours of incubation and amount of NH3-N lower other line in all incubation time. Therefore, there was profitable to the production of high quality wheat silage at the higher the sugar content.

  • PDF

The Analysis for Trans Fatty Acids in Dairy Products Imported to Republic of Korea (수입 유가공품 중 트랜스 지방산 함량 분석)

  • Park, Jae-Woo;Park, Ji-Sung;Jung, Doo-Kyung;Song, Sung-Ok;Woon, Jae-Ho;Kim, Jin-Man;Wee, Sung-Hwan
    • Food Science of Animal Resources
    • /
    • v.31 no.3
    • /
    • pp.477-483
    • /
    • 2011
  • In this study, the most preferred trans fatty acid analysis methods, AOAC 996.06 and the Korea Food and Drug Administration official method, were reviewed and modified to apply to dairy products and dairy products imported into the Republic of Korea for evaluating trans fatty acid (TFA) content. The Rose-Gottlieb method for total fat analysis was validated with accuracy and precision parameters by analyzing infant formula standard reference material provided by the National Institute for Standards and Technology. The accuracy and precision data satisfied the CODEX guidelines. TFAs were analyzed with a resolution of 1.5 for 45 min using the modified oven temperature program. This modified method was applied to 45 dairy products from 11 countries. Average TFA contents in these imported dairy products ranged from 0.1 to 5.4 g per 100 g product. The majority of dairy products imported into the Republic of Korea were cheeses. TFA contents in the cheeses were 0.1 to 2.4 g per 100 g cheese. TFA contents in other dairy products were 1.7 to 5.4 g per 100 g product. These TFAs content variations can be explained by the trans fatty acids naturally present in ruminant milk formed by bacterial bio-hydrogenation in the rumen of cows and the different vegetable fat used as ingredients in the final products.

Effect of Variety and Stage of Maturity on Nutritive Value of Whole Crop Rice Silage for Ruminants: In situ Dry Matter and Nitrogen Degradability and Estimation of Metabolizable Energy and Metabolizable Protein

  • Islam, M.R.;Ishida, M.;Ando, S.;Nishida, T.;Yoshida, N.;Arakawa, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1541-1552
    • /
    • 2004
  • The effect of eight varieties of whole crop rice silage (WCRS) harvested at four stages of maturity were investigated for in situ DM and N degradability, ME and MP yield and content in an 8${\times}$4 factorial experiment. The varieties were Akichikara, Fukuhibiki, Habataki, Hamasari, Hokuriku 168, Kusanami, Tamakei 96 and Yumetoiro. Hamasari and Kusanami were forage varieties while all others were grain varieties. Forages were harvested on 10, 22, 34 and 45 days after flowering, ensiled and kept in airtight condition. Between 45 and 49 days after ensiling, silages opened, chopped and milled green to pass through 4 mm screen. Samples were incubated in the rumen of two Holstein steers for 0, 3, 6, 9, 12, 24, 48, 72 and 96 h over eight 4 d periods. Bags at 0 h were washed in a washing machine. Variety affected DM (p<0.001: except 'a+b', p<0.01) and N (p<0.001) degradability characteristics of WCRS. Stages of maturity also affected DM (p<0.001: except 'a+b', p<0.05; 'c', p<0.08) and N (p<0.01: except 'c', p<0.05) degradability characteristics of WCRS. Interactions between variety and stages of maturity occurred in all DM (p<0.001) and N (p<0.001) degradability characteristics except (p>0.05) for DM 'b', DM 'c', DM 'a+b' nd N 'c'. Effective DM degradability was higher in grain varieties than forage varieties and degradability increased with maturity. N availability decreased only slightly with maturity. Variety was the key factor for N degradability characteristics of WCRS since variety accounted for most of the total variation for degradability characteristics. Both ME and MP content and yield were higher (p<0.001) in grain varieties, and they increased (p<0.001) with the maturity. The results clearly demonstrated that the grain type varieties contained higher ME and MP content than forage varieties, and increase in maturity increases both ME and MP content of WCRS.

Effect of Parotid Saliva Secretion on Dry Forage Intake in Goats

  • Sunagawa, Katsunori;Nakatsu, Yoshifumi;Nishikubo, Yoriko;Ooshiro, Takeshi;Naitou, Kouta;Nagamine, Itsuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1118-1125
    • /
    • 2003
  • Research was carried out to clarify whether a suppression of dry forage intake during the early stages of feeding in ruminants is caused by feeding induced hypovolemia which is produced by the accelerated secretion of parotid saliva. Goats with a parotid fistula were fed roughly crushed alfalfa hay cubes, commercial ground concentrate feed and $NaHCO_3$ twice daily (10:00-12:00, 16:00-18:00). The animals were free access to drinking water all day prior to, during and after experiments. The animals were intraruminally infused every day prior to the morning feeding period with parotid saliva collected from the parotid fistula over a 24 h period. The present experiment consisted of two treatments, non-infusion (RNI) and intraruminal infusion of parotid saliva (RSF). In the RSF treatment, 4-5 kg of parotid saliva (280-290 mOsm/l) collected over a 24 h period was intraruminally infused 1 h prior to the commencement of the morning feeding. During feeding, eating and parotid saliva secretion rates were measured. Blood samples were also periodically collected from the jugular vein. During and after 2 h feeding, water intakes were measured, respectively. These measurements were used to define thirst levels. It is thought that rumen fill in the RSF treatment was higher than the RNI treatment. Plasma osmolality in the RSF treatment increased in the first half of the 2 h feeding period due to the intraruminal infusion of parotid saliva. Therefore, parotid saliva secretion rates in the RSF treatment were lower than the RNI treatment for 30 min period from 30 to 60 min after the commencement of feeding. On the other hand, plasma total protein concentration and hematocrit in the RSF treatment decreased by 3.2 and 3.3% prior to the commencement of feeding due to the intraruminal infusion of parotid saliva. In the first half of the 2 h feeding period, plasma total protein concentration and hematocrit in the RSF treatment showed a tendency to decrease compared to the RNI treatment. Thirst level in the RSF treatment during feeding was approximately 31.3% less than the RNI treatment. Upon the completion of the 2 h feeding period, cumulative feed intake in the RSF treatment was significantly larger (19.7%) than the RNI treatment. The results suggest that a suppression of dry forage intake during the early stages of feeding in goats is partly caused by feeding induced hypovolemia, which is produced by the accelerated secretion of parotid saliva.

INFLUENCE OF DIETARY PROTEIN ON THE FRACTIONATION OF SELENIUM IN THE RUMEN OF SHEEP

  • Serra, A.B.;Serra, S.D.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.5
    • /
    • pp.557-562
    • /
    • 1996
  • The effects of diets differing in protein content through soybean meal supplementation on ruminal fractionation of selenium (Se) were studied. A $3{\times}3$ Latin square design was used with three Japanese Corriedale wethers (45 kg average body weight), three periods, and three dietary treatment. The three dietary treatments were : Diet 1, without soybean meal supplementation (14% crude protein, CP); Diet 2, with 10% soybean meal supplementation (16.5% CP); and Diet 3, with 20% soybean meal supplementation (19% CP). All the diets had a Se supplementation in the form of sodium selenite at 0.2 mg Se/kg dietary DM. The Se supplement and the concentrate mixture were fed only in the morning before the hay was given. Daily feeding schedule for gay was set at 09:00 and 17:00 h. On the final day of collection period, ruminal fluid samples were obtained at 0.5, 2, 6, 12 and 24 h post-feeding starting at 09:00 h. Total ruminal fluid Se was markedly higher (p<0.05) in Diet 3 than those in Diets 1 and 2 at almost all sampling time except at 24 h. The proportion of Se in soluble protein to the total ruminal Se was higher (p< 0.05) in Diet 3 (40%) followed by Diet 2 (28%) and Diet 1 (21%). The proportion of free inorganic Se to the total ruminal Se was the reverse, especially after two hours where Diet 1 (p<0.05) was higher than the other diets. Bacterial Se was lower (p < 0.05) in Diet 1 than those in Diets 2 and 3 at any sampling time. The highest was observed at 2 h postprandially in all diets with a value of 421, 556, $655{\mu}g/kg$ bacterial DM for Diet 1, 2 and 3, respectively. No differences (p>0.05) were observed on ruminal pH, ammonia and total nolatile fatty acids although increasing protein supplementation tended to decline the ruminal pH and increase ruminal ammonia. This study concludes that increasing dietary protein content by soybean meal supplementation can affect the ruminal Se metabolism.

Effects of Non-protein Energy Intake on Whole Body Protein Synthesis, Nitrogen Retention and Glucose Turnover in Goats

  • Fujita, Tadahisa;Kajita, Masahiro;Sano, Hiroaki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.536-542
    • /
    • 2007
  • The responses of whole body protein and glucose kinetics and of nitrogen (N) metabolism to non-protein energy intake (NPEI) were determined using an isotope dilution approach and measurement of N balance in three adult male goats. The diets containing 1.0, 1.5 and 2.0 times ME maintenance requirement, with fixed intake of CP (1.5 times maintenance) and percentage of hay (33%), were fed twice daily for each 21 d experimental period. After an adaptation period of 11 d, N balance was determined over 3 d. On day 17, whole body protein synthesis (WBPS) and glucose irreversible loss rate (ILR) were determined during the absorptive state by a primed-continuous infusion of [$^2H_5$]phenylalanine, [$^2H_2$]tyrosine, [$^2H_4$]tyrosine and [$^{13}C_6$]glucose, with simultaneous measurements of plasma concentrations of metabolites and insulin. Ruminal characteristics were also measured at 6 h after feeding over 3 d. Nitrogen retention tended to increase (p<0.10) with increasing NPEI, although digestible N decreased linearly (p<0.05). Increasing NPEI decreased (p<0.01) ammonia N concentration, but increased acetate (p<0.05) and propionate (p<0.05) concentrations in the rumen. Despite decreased plasma urea N concentration (p<0.01), increased plasma tyrosine concentration (p<0.05), and trends toward increased plasma total amino N (p<0.10) and phenylalanine concentrations (p<0.10) were found in response to increasing NPEI. Increasing NPEI increased ILR of both glucose (p<0.01) and phenylalanine (p<0.05), but did not affect ($p{\geq}0.10$) that of tyrosine. Whole body protein synthesis increased (p<0.05) in response to increasing NPEI, resulting from increased utilization rate for protein synthesis (p<0.05) and unchanged hydroxylation rate of phenylalanine ($p{\geq}0.10$). These results suggest that increasing NPEI may enhance WBPS and glucose turnover at the absorptive state and improve the efficiency of digestible N retention in goats, with possibly decreased ammonia and increased amino acid absorption. In addition, simultaneous increases in WBPS and glucose ILR suggest stimulatory effect of glucose availability on WBPS, especially when sufficient amino acid is supplied.

Effects of Replacing Lucerne (Medicago sativa L.) Hay with Fresh Citrus Pulp on Ruminal Fermentation and Ewe Performance

  • Sparkes, J.L.;Chaves, A.V.;Fung, Y.T.E.;van Ekris, I.;Bush, R.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.2
    • /
    • pp.197-204
    • /
    • 2010
  • Two studies were conducted to determine the effects of replacing 30% (% in diet DM) of lucerne (Medicago sativa L.) hay with citrus pulp in Merino ewe diets: i) an in vitro study which measured ruminal fermentation; and ii) an in vivo study in which twelve Merino ewes pre- and post-lambing were fed experimental diets in a cross-over design over 120 days to evaluate effects on ewe performance (i.e. DM intake, average daily gain (ADG) and wool growth). In both the in vitro and in vivo studies, the control treatment consisted of lucerne (91.3% in diet DM), lupins (8.3% in diet DM) and phosphate (0.42% in diet DM), while the citrus pulp treatment consisted of lucerne (57.7% in diet DM), lupins (9.5% in diet DM), phosphate (0.48% in diet DM) and fresh citrus pulp (32.3% in diet DM). Data were analysed using the mixed model procedure of SAS. In the in vitro study, gas production, total volatile fatty acid (VFA) yield, proportion of propionic acid to total VFA and in vitro dry matter digestibility (IVDMD) were higher (p<0.02) in the citrus pulp treatment compared to the control treatment. In contrast, in vitro ammonia production, pH and the acetate to propionate ratio were lower (p<0.03) for the citrus pulp treatment compared to the control treatment. In the in vivo study, DM intake of ewes fed the citrus pulp diet was lower than their control ewe counterparts throughout both the pre- and post-lambing periods (928.9 vs. 1,115.0 g/d pre-; 1,285.0 vs. 1,620.3 g/d post-lambing, p<0.01), however ADG was similar (p = 0.12). Wool growth parameters and lamb performance did not differ (p>0.32) between treatments. In summary, the in vitro study demonstrated that the replacement of 30% of a lucerne diet with fresh citrus pulp improved total VFA yield, increased total gas production and improved IVDMD, while decreasing the production of ammonia, acetic acid and rumen pH. In addition, the in vivo study demonstrated that the replacement of 30% of a lucerne diet with fresh citrus pulp pre- and post-lambing decreased intake but did not affect ewe performance in terms of ADG and wool growth. These findings, of course, would be of significant interest to sheep producers endeavouring to control cost of feed ingredients whilst maintaining productivity.

A Physiological Stimulating Factor of Water Intake during and after Dry Forage Feeding in Large-type Goats

  • Thang, Tran Van;Sunagawa, Katsunori;Nagamine, Itsuki;Kishi, Tetsuya;Ogura, Go
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.4
    • /
    • pp.502-514
    • /
    • 2012
  • When ruminants consume dry forage, they also drink large volumes of water. The objective of this study was to clarify which factor produced when feed boluses enter the rumen is mainly responsible for the marked increase in water intake in the second hour of the 2 h feeding period in large-type goats fed on dry forage for 2 h twice daily. Six large-type male esophageal- and ruminal-fistulated goats (crossbred Japanese Saanen/Nubian, aged 2 to 6 years, weighing $85.1{\pm}4.89kg$) were used in two experiments. In experiment 1, the water deprivation (WD) control and the water availability (WA) treatment were conducted to compare changes in water intake during and after dry forage feeding. In experiment 2, a normal feeding conditions (NFC) control and a feed bolus removal (FBR) treatment were carried out to investigate whether decrease in circulating plasma volume or increase in plasma osmolality is mainly responsible for the marked increase in water intake in the second hour of the 2 h feeding period. The results of experiment 1 showed that in the WA treatment, small amounts of water were consumed during the first hour of feeding while the majority of water intake was observed during the second hour of the 2 h feeding period. Therefore, the amounts of water consumed in the second hour of the 2 h feeding period accounted for 82.8% of the total water intake. The results of experiment 2 indicated that in comparison with the NFC control, decrease in plasma volume in the FBR treatment, which was indicated by increase in hematocrit and plasma total protein concentrations, was higher (p<0.05) in the second hour of the 2 h feeding period. However, plasma osmolality in the FBR treatment was lower (p<0.05) than compared to the NFC control from 30 min after the start of feeding. Therefore, thirst level in the FBR treatment was 82.7% less (p<0.01) compared with that in the NFC control upon conclusion of the 30 min drinking period. The results of the study indicate that the increased plasma osmolality in the second hour of the 2 h feeding period is the main physiological stimulating factor of water intake during and after dry forage feeding in large-type goats.