• 제목/요약/키워드: rule-based model

검색결과 1,025건 처리시간 0.029초

마코프 랜덤 필드를 이용한 움직이는 객체의 분할에 관한 연구 (Moving object segmentation using Markov Random Field)

  • 정철곤;김중규
    • 한국통신학회논문지
    • /
    • 제27권3A호
    • /
    • pp.221-230
    • /
    • 2002
  • 본 논문에서는 마코프 랜덤 필드를 이용해 움직이는 객체를 분할하는 새로운 방법을 제안하였다. 제안된 방법은 신호 탐지 이론에 기반을 두고 있다. 즉, 영상에서의 모션의 존재 유무는 binary decision rule에 의해 결정되고 잘못된 결정은 마코프 랜덤 필드 모델에 의해 수정된다. 전체적인 분할 과정은 2단계로 나뉘어진다. 첫 단계는 '모션탐지' 단계이며, 두번째 단계는 '객체분할' 단계이다. '모션탐지' 단계에서는 optical flow에 의해 발생하는 속도 벡터들에 대하여 binary decision rule을 적용하여 모tus의 존재 유무를 결정하는 과정이다. '객체분할' 단계에서는 첫 단계에서 원치 않게 발생하는 잡음을 제거한다. 이때 마코프 랜덤 필드로 가정하고 베이스 규칙에 의해 잡음을 제거한다. 실험결과, 연속영상에서 움직이는 객체의 영역을 효율적으로 분할함을 확인할 수 있었다.

전기화재 원인진단을 위한 지능형 프로그램 개발 (Development of an Intelligent Program for Diagnosis of Electrical Fire Causes)

  • 권동명;홍성호;김두현
    • 한국안전학회지
    • /
    • 제18권1호
    • /
    • pp.50-55
    • /
    • 2003
  • This paper presents an intelligent computer system, which can easily diagnose electrical fire causes, without the help of human experts of electrical fires diagnosis. For this system, a database is built with facts and rules driven from real electrical fires, and an intellectual database system which even a beginner can diagnose fire causes has been developed, named as an Electrical Fire Causes Diagnosis System : EFCDS. The database system has adopted, as an inference engine, a mixed reasoning approach which is constituted with the rule-based reasoning and the case-based reasoning. The system for a reasoning model was implemented using Delphi 3, one of program development tools, and Paradox is used as a database building tool. To verify effectiveness and performance of this newly developed diagnosis system, several simulated fire examples were tested and the causes of fire examples were detected effectively by this system. Additional researches will be needed to decide the minimal significant level of the solution and the weighting level of important factors.

DESIGN OF A FPGA BASED ABWR FEEDWATER CONTROLLER

  • Huang, Hsuanhan;Chou, Hwaipwu;Lin, Chaung
    • Nuclear Engineering and Technology
    • /
    • 제44권4호
    • /
    • pp.363-368
    • /
    • 2012
  • A feedwater controller targeted for an ABWR has been implemented using a modern field programmable gate array (FPGA), and verified using the full scope simulator at Taipower's Lungmen nuclear power station. The adopted control algorithm is a rule-based fuzzy logic. Point to point validation of the FPGA circuit board has been executed using a digital pattern generator. The simulation model of the simulator was employed for verification and validation of the controller design under various plant initial conditions. The transient response and the steady state tracking ability were evaluated and showed satisfactory results. The present work has demonstrated that the FPGA based approach incorporated with a rule-based fuzzy logic control algorithm is a flexible yet feasible approach for feedwater controller design in nuclear power plant applications.

다양한 연속 교통류 구현을 위한 확률파장전파모형의 개발 (A Study on Stochastic Wave Propagation Model to Generate Various Uninterrupted Traffic Flows)

  • 장현호;백승걸;박재범
    • 대한교통학회지
    • /
    • 제22권4호
    • /
    • pp.147-158
    • /
    • 2004
  • SWP(Stochastic Wave Propagation: 확률파장전파) 모형은 Cellular Automata(CA) 이론을 기반으로한 간략한 차량모형을 이용하여 개별차량의 확률적 형태와 혼잡의 전파를 모사하고, 통계물리학을 기반으로 교통류를 거시적으로 해석한다. SWP모형은 이산적 시공간 구조와 정수형 자료를 이용한 프로그램 지향적 모형구조를 가지며 연산수행속도가 빨라 대규모 가로망의 실시간 시뮬레이션을 가능하게 하였다. 그러나 비현실적인 충돌회피과정으로 인한 자연발생적 혼잡(Spontaneous jam)의 형성 때문에 미시적으로는 혼잡내에서 잠금현상(Lockup)이 발생하여 혼잡내 차량의 저속을 설명할 수 없고, 거시적으로는 혼잡의 밀도와 전파속도를 설명하기 어렵다는 한계를 가지고 있다. 본 연구에서는 비현실적인 차량의 정지과정을 보다 현실적으로 모사하기 위한 정지조작규칙(SMR: Stopping Maneuver Rule)과 혼잡내에서 차량의 낮은 가속을 설명하기 위한 저가속규칙(LAR: Low Acceleration Rule)을 기존의 SWP모형인 NaSch모형에 추가하였다. 이를 통해 미시적으로 보다 현실적인 차량의 정지과정을 모사하면서 혼잡내에서 잠금현상을 방지하고, 거시적으로 혼잡의 밀도와 전파속도를 설명함으로써 보다 다양하게 연속 교통류를 구현하는 모형을 구축하였다.

은닉 마르코프 모델을 이용한 해양사고에 개입된 선원의 행동경로 추정 (Estimating the Behavior Path of Seafarer Involved in Marine Accidents by Hidden Markov Model)

  • 임정빈
    • 한국항해항만학회지
    • /
    • 제43권3호
    • /
    • pp.160-165
    • /
    • 2019
  • 선원의 행동은 해양사고에 있어서 주요한 원인이다. 본 연구에서는 은닉 마르코프 모델(Hidden Markov Model)에 기반하여 선원의 행동을 모델링하였다. 그런 후, 모델에서 추정한 행동의 경로분석을 통하여 어떠한 상황과 절차 그리고 오류에 의해서 해양사고가 발생되는지를 해석하였다. 모델 구현을 위하여, 선원의 행동을 해양안전심판원에서 간행된 재결 요약서에서 관측하였고, 관측한 결과는 SRKBB(Skill-, Rule-, and Knowledge-Based Behavior)를 기반으로 한 행동분류 프레임워크를 이용하여 HMM 학습에 적합한 행동 데이터로 변환하였다. 선박유형별 선원의 행동을 모델링한 결과, 선박 유형별로 차별성이 있음을 확인하였고, 선원이 우선적으로 행한 행동경로의 식별이 가능하였다. 연구 결과, 본 연구에서 제안한 모델링 기법은 선원의 행동경로 예측에 적용 가능할 뿐만 아니라 해양사고 예방에 필요한 선원 행동 보정을 위한 우선순위 결정에 기여할 수 있을 것으로 기대된다.

연관규칙을 이용한 잠재성장모형의 개선방법론 (A Methodology for Improving fitness of the Latent Growth Modeling using Association Rule Mining)

  • 조영빈;전재훈;최병우
    • 한국융합학회논문지
    • /
    • 제10권2호
    • /
    • pp.217-225
    • /
    • 2019
  • 대표적인 종단자료 분석방법인 잠재성장모형(Latent Growth Modeling)은 무조건적 모형과 조건적 모형으로 구분한다. 잠재성장모형의 무조건적 모형 성장궤적은 선형으로 가정하여 분석하는 경우가 많다. 본 연구는 선형 성장궤적으로 가정하여 모형 적합도가 미달하는 경우 연관규칙기법을 이용하여 모형 적합도를 제고하는 방법론을 제안한다. 방법론은 연관규칙 마이닝의 순차패턴(Sequential Pattern)을 사용한다. 이를 위하여 종단자료를 분위별로 나누고, 각 분위에 속한 종단자료의 기간 변화를 산출한 뒤 이를 순차 패턴 화하였다. SPSS AMOS를 이용하여 한국고용정보원의 2001년부터 6년간 조사한 청년 패널 자료로 효과성을 검증하였다. 기존 단순선형함수를 가정할 때와 비교하여 모형 적합도가 상승하는 것을 확인할 수 있었다.

작업준비시간이 없는 이종 병렬설비에서 총 소요 시간 최소화를 위한 미미틱 알고리즘 기반 일정계획에 관한 연구 (A Study on Memetic Algorithm-Based Scheduling for Minimizing Makespan in Unrelated Parallel Machines without Setup Time)

  • 이태희;유우식
    • 대한안전경영과학회지
    • /
    • 제25권2호
    • /
    • pp.1-8
    • /
    • 2023
  • This paper is proposing a novel machine scheduling model for the unrelated parallel machine scheduling problem without setup times to minimize the total completion time, also known as "makespan". This problem is a NP-complete problem, and to date, most approaches for real-life situations are based on the operator's experience or simple heuristics. The new model based on the Memetic Algorithm, which was proposed by P. Moscato in 1989, is a hybrid algorithm that includes genetic algorithm and local search optimization. The new model is tested on randomly generated datasets, and is compared to optimal solution, and four scheduling models; three rule-based heuristic algorithms, and a genetic algorithm based scheduling model from literature; the test results show that the new model performed better than scheduling models from literature.

퍼지 기반 다양한 모델을 이용한 회전익 항공기 착륙장치의 위험 우선순위 평가 (Risk Analysis for the Rotorcraft Landing System Using Comparative Models Based on Fuzzy)

  • 나성현;이광은;구정모
    • 한국안전학회지
    • /
    • 제36권2호
    • /
    • pp.49-57
    • /
    • 2021
  • In the case of military supplies, any potential failure and causes of failures must be considered. This study is aimed at examining the failure modes of a rotorcraft landing system to identify the priority items. Failure mode and effects analysis (FMEA) is applied to the rotorcraft landing system. In general, the FMEA is used to evaluate the reliability in engineering fields. Three elements, specifically, the severity, occurrence, and detectability are used to evaluate the failure modes. The risk priority number (RPN) can be obtained by multiplying the scores or the risk levels pertaining to severity, occurrence, and detectability. In this study, different weights of the three elements are considered for the RPN assessment to implement the FMEA. Furthermore, the FMEA is implemented using a fuzzy rule base, similarity aggregation model (SAM), and grey theory model (GTM) to perform a comparative analysis. The same input data are used for all models to enable a fair comparison. The FMEA is applied to military supplies by considering methodological issues. In general, the fuzzy theory is based on a hypothesis regarding the likelihood of the conversion of the crisp value to the fuzzy input. Fuzzy FMEA is the basic method to obtain the fuzzy RPN. The three elements of the FMEA are used as five linguistic terms. The membership functions as triangular fuzzy sets are the simplest models defined by the three elements. In addition, a fuzzy set is described using a membership function mapping the elements to the intervals 0 and 1. The fuzzy rule base is designed to identify the failure modes according to the expert knowledge. The IF-THEN criterion of the fuzzy rule base is formulated to convert a fuzzy input into a fuzzy output. The total number of rules is 125 in the fuzzy rule base. The SAM expresses the judgment corresponding to the individual experiences of the experts performing FMEA as weights. Implementing the SAM is of significance when operating fuzzy sets regarding the expert opinion and can confirm the concurrence of expert opinion. The GTM can perform defuzzification to obtain a crisp value from a fuzzy membership function and determine the priorities by considering the degree of relation and the form of a matrix and weights for the severity, occurrence, and detectability. The proposed models prioritize the failure modes of the rotorcraft landing system. The conventional FMEA and fuzzy rule base can set the same priorities. SAM and GTM can set different priorities with objectivity through weight setting.

Part-of-speech Tagging for Hindi Corpus in Poor Resource Scenario

  • Modi, Deepa;Nain, Neeta;Nehra, Maninder
    • Journal of Multimedia Information System
    • /
    • 제5권3호
    • /
    • pp.147-154
    • /
    • 2018
  • Natural language processing (NLP) is an emerging research area in which we study how machines can be used to perceive and alter the text written in natural languages. We can perform different tasks on natural languages by analyzing them through various annotational tasks like parsing, chunking, part-of-speech tagging and lexical analysis etc. These annotational tasks depend on morphological structure of a particular natural language. The focus of this work is part-of-speech tagging (POS tagging) on Hindi language. Part-of-speech tagging also known as grammatical tagging is a process of assigning different grammatical categories to each word of a given text. These grammatical categories can be noun, verb, time, date, number etc. Hindi is the most widely used and official language of India. It is also among the top five most spoken languages of the world. For English and other languages, a diverse range of POS taggers are available, but these POS taggers can not be applied on the Hindi language as Hindi is one of the most morphologically rich language. Furthermore there is a significant difference between the morphological structures of these languages. Thus in this work, a POS tagger system is presented for the Hindi language. For Hindi POS tagging a hybrid approach is presented in this paper which combines "Probability-based and Rule-based" approaches. For known word tagging a Unigram model of probability class is used, whereas for tagging unknown words various lexical and contextual features are used. Various finite state machine automata are constructed for demonstrating different rules and then regular expressions are used to implement these rules. A tagset is also prepared for this task, which contains 29 standard part-of-speech tags. The tagset also includes two unique tags, i.e., date tag and time tag. These date and time tags support all possible formats. Regular expressions are used to implement all pattern based tags like time, date, number and special symbols. The aim of the presented approach is to increase the correctness of an automatic Hindi POS tagging while bounding the requirement of a large human-made corpus. This hybrid approach uses a probability-based model to increase automatic tagging and a rule-based model to bound the requirement of an already trained corpus. This approach is based on very small labeled training set (around 9,000 words) and yields 96.54% of best precision and 95.08% of average precision. The approach also yields best accuracy of 91.39% and an average accuracy of 88.15%.

퍼지 페트리네트를 이용한 구간값 퍼지 집합 후진추론 (Interval-Valued Fuzzy Set Backward Reasoning Using Fuzzy Petri Nets)

  • 조상엽;김기석
    • 한국멀티미디어학회논문지
    • /
    • 제7권4호
    • /
    • pp.559-566
    • /
    • 2004
  • 일반적으로 퍼지 생성규칙의 확신도와 규칙에 나타나는 퍼지 명제의 확신도는 0과 1사이의 실수로 표현한다. 만일 퍼지 생성규칙의 확신도와 퍼지 명제의 확신도를 구간값 퍼지 집합으로 표현한다면, 규칙기반시스템이 더 유연한 방법으로 퍼지 추론을 하는 것이 가능하게 된다. 본 논문에서는 퍼지 페트리네트와 이 네트에 기반을 둔 규칙 기반시스템을 위한 구간값 퍼지 집합 후진추론 알고리즘을 제안한다. 규칙 기반시스템에 있는 퍼지 생성규칙은 퍼지 페트리네트로 모형화된다. 여기에서 퍼지 생성규칙에 나타나는 퍼지 명제의 확신도와 규칙의 확신도는 구간값 퍼지 집합으로 표현한다. 여기에서 제안한 알고리즘은 목표노드에서 시작노드까지 후진추론 통로를 찾아낸 후 목표노드의 확신도를 계산한다. 구간값 퍼지 집합 후진추론 알고리즘은 규칙 기반 시스템이 더 유연하고 사람들이 하는 것과 같은 퍼지 후진추론을 가능하게 한다.

  • PDF