• Title/Summary/Keyword: rudder angle

Search Result 166, Processing Time 0.026 seconds

A Study on the Method of Turning Circle Drawing by Z-test (Z시험에 의한 선회권의 작도법에 관한 연구)

  • 오정철
    • Journal of the Korean Institute of Navigation
    • /
    • v.7 no.1
    • /
    • pp.33-62
    • /
    • 1983
  • A navigator on bridge needs to know every kinds of motion characteristics of his vessel at sea. Generally when a vessel is completely built, the shipyard makes turning circle diagrams from the results of turing circle tests made during the sea trials for the reference of the vessel's owner. But referring only the data of a turning circle diagram, an officer on bridge can not figure out his vessel's maneuvering characteristics sufficiently, So nowadays the shipyard often adds Z test to turning circle test for more detail references. In this paper the author made Z and turning circle tests at the rudder angles of 15 and and 35 degress separately and in each of the case made a turrning circle diagram from the results of the turning circle test and the esults numerically calculated from mathematical formula made on the base of the maneuvering indices got from the Z test and compared them each other for the purpose of finding the correlations between them. Followings are concluded from the results. An actual turning circle diagram and a calculated one from the results of the Z test at same rudder angle coincides each other well when the center of the calculated circle is transferred by 1.7B toward the direction of the initial turning perpendicularly to the original course and 0.5L toward the direction in parallel with original course in case of the rudder angle of 35 degrees and 1.2B and 0.3L toward each of the above mentioned directions in case of rudder angle of 15 degrees.

  • PDF

Control Effect of Hydro-kinetic Force of a Special Rudder attached Flap (플랩이 부착된 특수타의 동유체력 제어효과에 관한 연구)

  • Gim, Ok-Sok;Lee, Gyoung-Woo;Ahn, Young-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.771-776
    • /
    • 2008
  • The main purpose in having a control surface on a ship is to control the motion of it. It is the important element to determine the maneuvering characteristics of the ship. In this paper, the measured results has been compared with each other to predict the performance characteristics of flapped rudder's 2-dimensional section at $Re=3.0{\times}10^4$ using 2-frame grey level cross correlation PIV method. The side force of the rudder could be mainly improved by the lift force at 10 degrees angle of attack and the drag force at 20 degrees angle of attack. The separation point and boundary layer could be controlled by the change of the only flap's angle at 10 degrees angle of attack.

Maneuverability of a DWT 8,000-ton oil/chemical tanker by real sea trials - A comparison between the semi-balanced rudder and the flap rudder - (실선시험에 의한 DWT 8,000톤 선박의 조종성능 - Semi-balanced rudder and flap rudder -)

  • An, Young-Su;Lee, Hyeong-Geun;Park, Byung-Soo;Jang, Choong-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.2
    • /
    • pp.257-264
    • /
    • 2015
  • This study is intended to provide navigator with specific information necessary to assist the avoidance of collision and the operation of ships to evaluate the maneuverability of dead weight tonnage 8,000 tons Oil/Chemical tanker. The actual maneuvering characteristics of ship can be adequately judged from the results of typical ship trials. Author carried out sea trials based full scale for turning test, Z" maneuvering test, man overboard rescue maneuver test, inertia stopping test. Consequently, $2^{st}$ Overshoot yaw angle of the semi balanced rudder and flap rudder in ${\pm}20^{\circ}$ zig-zag test showed $22.2^{\circ}$ and $18.0^{\circ}$, respectively. The maneuverability of the vessel was good in the flap rudder. The man overboard rescue maneuver maneuverability test was most favorable in the flap rudder and the full load condition. The results from tests could be compared directly with the standards of maneuverability of IMO and consequently the maneuvering qualities of the ship is full satisfied with its.

Effects for reduction of roll motion by the control of steering gear (조타장치 제어에 의한 횡동요 감소 효과)

  • Choi, Chan-Moon;Lee, Chang-Heon;Ahn, Jang-Young;Yoshimura, Yasuo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.1
    • /
    • pp.37-45
    • /
    • 2011
  • Reduction of ship's rolling is the most important performance requirement for improving the safety of the crew on board and preventing damage to cargo as well as improving the comfort of the ride. It is a common experience for mariners, to see that steering with a rudder generally induces rolling of the ship, though the original aim of the rudder is to keep the ship's heading to the required course. At the first stage, when a rudder is steered, usually a ship heels in an inward direction, due to the roll moment acting on the rudder. At the next stage in steering, the main heel may change to an outward. This coupling between rudder and roll motion has become an attractive problem from the point of view of roll stabilization using the rudder, because it is a natural in sight that if the rudder action is skillfully related to the change of roll as well as to the course deviation, the roll can be reduced to a certain degree. The main aim of this paper is to discuss the results of the actual full-scale sea trials carried out on steer gear No.1 and No.1 2, the individual quartermaster and to make clear their statistical properties, using the actual data which included measurement of roll angle, roll rate and the comparative tests were carried out immediately after each other, in order to minimize any statistical variation in sea conditions. It can be concluded that the steer gear No. 1 2 reduced the roll motion on average by about 21% in comparison with the No.1 and confirmed the some difference as per a ability of quarter-master's maneuver.

Research on Hydrodynamic Performance of the Interaction between Ducted Propeller and Rudder based on CFD

  • Xie, Yonghe;Wang, Guibiao;Wang, Wei
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.169-174
    • /
    • 2013
  • The computational fluid dynamics software FLUENT is used to calculate and compare the hydrodynamic performance of the propeller-rudder system of a 42-m trawler, which is installed with a ducted propeller. The effects of rudder on the hydrodynamic performance of the ducted propeller and the wake flow behind the propeller are firstly investigated. In addition, the different rudder angles are also considered to further study the performance of this system.

Performance analysis of a horn-type rudder implementing the Coanda effect

  • Seo, Dae-Won;Oh, Jungkeun;Jang, Jinho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.177-184
    • /
    • 2017
  • The Coanda effect is the phenomenon of a fluid jet to stay attached to a curved surface; when a jet stream is applied tangentially to a convex surface, lift force is generated by increase in the circulation. The Coanda effect has great potential to be applied practically applied to marine hydrodynamics where various lifting surfaces are being widely used to control the behavior of ships and offshore structures. In the present study, Numerical simulations and corresponding experiments were performed to ascertain the applicability of the Coanda effect to a horn-type rudder. It was found that the Coanda jet increases the lift coefficient of the rudder by as much as 52% at a jet momentum coefficient of 0.1 and rudder angle of $10^{\circ}$.

Numerical Simulation for the Rudder in order to Control the Cavitation Phenomena

  • Boo, Kyung-Tae;Song, In-Hang;Soochul Shin
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.1
    • /
    • pp.42-50
    • /
    • 2004
  • In these ten years, the cavitation and erosion phenomena in the rudder have been increased for high-speed container ships. The cavitation in the rudder blades which is injurious to rudder efficiency is mainly caused by the main flow with a large angle of attack induced by propellers, and the erosion which occurs as a result of repeated blows by shock wave that cavitation collapse may produce was observed in the gap legion of the rudder. However, gap cavitation is not prone to occur in model experiments because of low Reynolds number. So, the viscous effect should be considered for solving the flow of the narrow gap. In order to predict the cavitation phenomena and to improve the performance of the rudder, the analysis of the viscous flow in the rudder gap is positively necessary. In this study, numerical calculation for the solution of the RANS equation is applied to the two-dimensional flow around the rudder gap including horn part and pintle part. The velocity and pressure field are numerically acquired according to Reynolds number and the case that the round bar is installed in the gap is analyzed. For reduced the acceleration that pressure drop can be highly restrained numerically and in model experiment, the cavitation bubbles can be reduced.

A Study to Improve the Lift Performance of a Full Spade Rudder with the Coanda Effect (콴다효과를 이용한 전 가동 타의 양력성능 개선에 관한 연구)

  • Seo, Dae-Won;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.25-32
    • /
    • 2013
  • The shape of a conventional full spade rudder has been modified to implement the Coanda effect and consequential changes in the flow characteristics are carefully examined to show the significant enhancement in the lift performance. A preliminary numerical study has been done to identify the optimum configuration of the modified rudder sections. For the purpose, chord wise locations of the jet slit and the radii of the trailing edge were varied in several ways and the changes in the lift characteristics have been observed at the various angles of attack, particularly focusing on the usefulness of the Coanda effect upon delaying the stall or increase in the circulation. Making the most use of the results so attained, full spade rudder of a VLCC has been reformed to realize the Coanda effect. A series of model experiments and numerical simulations are performed to confirm the effectiveness of the Coanda effect in improving the performance of the modified rudder. It is found that considerable enhancement in the lift performance of the rudder is plausible at any rudder angle if an optimum jet momentum is provided.

A numerical simulation for reduction of rudder cavitation with gap flow blocking bars

  • Oh, Jung-Keun;Lee, Seung-Hee;Kim, Sang-Hyun;Seo, Dae-Won
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.71-82
    • /
    • 2012
  • In recent practices, a half circular prismatic bar protruding beyond the concave surface of the horn facing the gap has been formed along the centerplane of a rudder to lessen the gap flow between the horn and the movable portion of the rudder system. If a flow through the gap of a rudder is reduced considerably through this approach, previous numerical studies indicate that not only the gap flow but also the rudder cavitation can be noticeably diminished. In the present study, numerical simulations on two-dimensional rudder sections were performed to show that the blocking ability of the single centre bar can be improved by the proper choice of sectional shape. Moreover, a pair of blocking bars attached symmetric to the centerplane on the opposite convex surface of the movable portion is suggested in the study as well, to circumvent the difficulties arising from the practical application of the single centre bars. The bars are placed near the outer edges of the gap easily accessible at the maximum rudder angle to allow simple installation of the device during a maintenance period of a ship. It is found that the pair of blocking bars further improves the blocking effects and application to a practical three-dimensional rudder also backs up the fact.

Error analysis of underwater vehicle under influence of disturbance and time delay (외란과 시간 지연에 의한 수중 운동체의 오차 해석)

  • 나윤철;이정규;권순홍;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.845-849
    • /
    • 1992
  • The disturbance and time delay can often cause a significant error in the estimation of trajectory of a underwater vehicle. The time delay considered in this study is due to the delayed rudder response to the rudder input from the guidance control part. The simulation tests are performed on maneuver with constant rudder angle, zigzag maneuver, dive-climb maneuver, and corridor pattern maneuver. The results are compared with those of without delay cases.

  • PDF