• 제목/요약/키워드: rudder angle

검색결과 167건 처리시간 0.027초

On the Manoeuvring Motion Considering the Interaction Forces in Confined Waters

  • Lee, Chun-Ki;Kang, Il-Kwon
    • 한국항해항만학회지
    • /
    • 제27권6호
    • /
    • pp.639-643
    • /
    • 2003
  • The emphasis is put on the detailed knowledge on manoeuvring characteristic for the safe navigation while avoiding terrible collision between ships and on the guideline to the design and operation of the ship-waterway system The numerical simulation of manoeuvring motion was carried out parametrically for different ship types, ship-velocity ratios, separation and stagger between ships. As for the calculation parameters, the ratios of velocity difference (hereafter, $U_2$/$U_1$ ) between two ships were considered as 0.6, 1.2, 1.5. From the inspection of this investigation, it indicates the following result. Considering the interaction force only as parameter, the lateral distance between ships is necessarily required for the ship-velocity ratio of 1.2, compared to the cases of 0.6 and 1.5 regardless of the ship types. Furthermore, regardless of the ship-velocity ratio, an overtaking and overtaken vessel can be manoeuvred safely without deviating from the original course under the following conditions: the lateral distance between two vessels is approximately kept at 0.5 times of ship-length and 5 through 10. degrees of range in maximum rudder angle. The manoeuvring characteristic based on this investigation will be very useful for keeping the safety of navigation from the practical point of ships design and traffic control in restricted waterways.

30피트급 요트의 선형개발 및 성능추정 (Development of 30 Feet Sailing Yacht and Performance Predictions)

  • 유재훈;반석호;안해성;김진;김상현
    • 대한조선학회논문집
    • /
    • 제42권1호
    • /
    • pp.34-42
    • /
    • 2005
  • An overview of 30 feet sailing yacht design is presented, with an emphasis on the factors contributing to start-up popularization. After prescribing the configurations of the purposed yacht, the design of the hull form with a rudder and a keel, are schematically described. Also the determinations of the dimensions of the sail and rig are performed. Finally this paper is associated with the state-of-the-art of calculating sailing yacht performance as this is performed in velocity prediction program (VPP). The VPP results shows a typical shape of a sailing yacht and the designed yacht has the best performance at 120 degree angle of true wind with 20 knots.

항공기의 고도, 속도 및 깊은 실속의 회복을 위한 자동회복장치 설계 및 검증에 관한 연구 (A Study on the Design and Validation of Automatic Pitch Rocker System for Altitude, Speed and Deep Stall Recovery)

  • 김종섭
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.240-248
    • /
    • 2009
  • Modem version of supersonic jet fighter aircraft must have been guaranteed appropriate controllability and stability in HAoA(High Angle of Attack). The HAoA flight control law have two parts, one is control law of departure prevention and the other is control law of departure recovery support. The control laws of departure prevention for advanced jet trainer consist of HAoA limiter, roll command limiter and rudder fader. The control laws of departure recovery support are consist of yaw-rate limiter and MPO(Manual Pitch Override) mode. The guideline of pitch rocking using MPO mode is simple, but operating skill of pitch rocking is very difficult by the pilot with inexperience of departure situation. Therefore, automatic deep stall recovery system is necessary. The system called the "Automatic Pitch Rocker System" or APRS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of deep stall, speed and altitude. This paper addresses the design and validation for APRS to recovery of an deep stall without manual pitch rocking by the pilot. Also, this system is designed to recovery of speed, attitude and altitude after deep stall recovery using ATCS (Automatic Thrust Control System) and autopilot. Finally, this system is verified by real-time pilot evaluation using HQS (Handling Quality Simulator).

Estimation of Hydrodynamic Derivatives of Full-Scale Submarine using RANS Solver

  • Nguyen, Tien Thua;Yoon, Hyeon Kyu;Park, Youngbum;Park, Chanju
    • 한국해양공학회지
    • /
    • 제32권5호
    • /
    • pp.386-392
    • /
    • 2018
  • It is necessary to predict hydrodynamic derivatives when assessing the maneuverability of a submarine. The force and moment acting on the vehicle may affect its motion in various modes. Conventionally, the derivatives are determined by performing captive model tests in a towing tank or applying a system identification method to the free running model test. However, a computational fluid dynamics (CFD) method has also become a possible tool to predict the hydrodynamics. In this study, virtual captive model tests for a full-scale submarine were conducted by utilizing a Reynolds-averaged Navier-Stokes solver in ANSYS FLUENT version 18.2. The simulations were carried out at design speed for various modes of motion such as straight forward, drift, angle of attack, deflection of the rudder, circular, and combined motion. The hydrodynamic force and moment acting on the submarine appended rudders and stern stabilizers were then obtained. Finally, hydrodynamic derivatives were determined, and these could be used for evaluating the maneuvering characteristics of the submarine in a further study.

Estimating Hydrodynamic Coefficients of Real Ships Using AIS Data and Support Vector Regression

  • Hoang Thien Vu;Jongyeol Park;Hyeon Kyu Yoon
    • 한국해양공학회지
    • /
    • 제37권5호
    • /
    • pp.198-204
    • /
    • 2023
  • In response to the complexity and time demands of conventional methods for estimating the hydrodynamic coefficients, this study aims to revolutionize ship maneuvering analysis by utilizing automatic identification system (AIS) data and the Support Vector Regression (SVR) algorithm. The AIS data were collected and processed to remove outliers and impute missing values. The rate of turn (ROT), speed over ground (SOG), course over ground (COG) and heading (HDG) in AIS data were used to calculate the rudder angle and ship velocity components, which were then used as training data for a regression model. The accuracy and efficiency of the algorithm were validated by comparing SVR-based estimated hydrodynamic coefficients and the original hydrodynamic coefficients of the Mariner class vessel. The validated SVR algorithm was then applied to estimate the hydrodynamic coefficients for real ships using AIS data. The turning circle test wassimulated from calculated hydrodynamic coefficients and compared with the AIS data. The research results demonstrate the effectiveness of the SVR model in accurately estimating the hydrodynamic coefficients from the AIS data. In conclusion, this study proposes the viability of employing SVR model and AIS data for accurately estimating the hydrodynamic coefficients. It offers a practical approach to ship maneuvering prediction and control in the maritime industry.

선속이 선회권에 미치는 영향에 관한 연구 (The Effect of the Speed of a Ship on Her Turning Circle)

  • 김기윤
    • 수산해양기술연구
    • /
    • 제35권3호
    • /
    • pp.209-214
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

  • PDF

선속이 선회권에 미치는 영향에 관한 연구 (The Effect of the Speed of a Ship on Her Turning Circle)

  • 김기윤
    • 수산해양기술연구
    • /
    • 제35권3호
    • /
    • pp.210-210
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

고받음각에서 항공기 이탈 방지를 위한 제어법칙에 관한 연구 (A Study on Prevention Control Law of Aircraft Departure at High Angle of Attack)

  • 김종섭;황병문;정대희;김성준;배명환
    • 한국항공우주학회지
    • /
    • 제33권7호
    • /
    • pp.85-91
    • /
    • 2005
  • 군용항공기는 고받음각에서 적절한 조종성 및 항공기 이탈에 대한 안정성을 확보하고 있어야 한다. 고받음각에서 항공기가 이탈에 진입할 수 있는 한계값은 항공기 형상설계에 직결되는 문제이다. 하지만 현대의 고성능 전투기는 전기식 비행제어계통을 사용하여 고받음각 제어법칙을 설계함으로써 한계 값 내에서 항공기의 안정성을 보장하고 있으며 항공기가 이탈 시, 안전하게 회복할 수 있도록 고받음각 제어법칙을 설계한다. 현재 T-50에 적용되어 있는 고받음각 제어법칙은, 세로축 방향으로는 받음각 제한기 및 MPO(Manual Pitch Override) 모드, 가로-방향축으로는 고받음각 이탈제한기, 가로축 명령제한기, 방향축 조종사 명령제한기 및 스핀방지기가 설계되어 있다. 본 논문에서는 T-50 에 적용되어 있는 고받음각 제어법칙을 소개하며, 고받음각 비행시험을 통하여 항공기 안정성에 관한 연구를 수행하였다.

Auto-Pilot 시스템의 센서 및 actuator 고장진단을 위한 Failure Detection Filter (Failure Detection Filter for the Sensor and Actuator Failure in the Auto-Pilot System)

  • 서상현
    • 대한조선학회논문집
    • /
    • 제30권4호
    • /
    • pp.8-16
    • /
    • 1993
  • 자동항법장치(Auto-Pilot System)에 의한 방향제어는 방위계측센서에 의해 계측된 위치 정보와 선미조타장치를 바탕으로 이루어진다. 대부분의 제어시스템들은 센서 잡음을 제외하고는 고장이 없는 계측장비와 고장없는 actuator를 가정하여 상태추정 빛 제어알고리듬을 구현하고 있다. 그러나 실제 상황에서는 이러한 가정이 위험한 경우가 많다. 즉, 방위 계측장비가 고장인 난 경우, 이 잘못된 위치 정보에 기초한 제어기능은 심각한 안전상의 문제까지도 야기시킬 수 있는 것이다. 본 연구에서는 개선된 위치정보처리 방법을 포함시킨 제어시스템을 Auto-Pilot 시스템에 적용하여 보았다. 그 방법으로 센서 고장 진단 및 actuator 고장 진단용 BJDF(Beard-Jones Detection Filter)를 설계하여 그 기능을 파악하였고 일반적인 상태변수추정기와의 차이점을 보였다. 특히 센서의 Bias Error의 경우 상태변수 확장기법을 이용하여 actuator 고장진단의 모형으로 모형화 할 수 있음을 보였다. 이로 인하여 센서 고장의 경우 2차원 평면에 국한된 residual이 일정 방향의 residual로 되므로 고장진단이 용이함을 알 수 있었다.

  • PDF

자유수면 근처에서 직진하는 BB2 잠수함의 심도별 유체력과 중립운항에 대한 구속모형시험 연구 (A Captive Model Test on Hydrodynamic Force and Neutral Level Flight of BB2 Submarine in Straight Operation at Near Free Surface with Different Depths)

  • 권창섭;김동진;윤근항;김연규
    • 대한조선학회논문집
    • /
    • 제59권5호
    • /
    • pp.288-295
    • /
    • 2022
  • In this study, the force and moment acting on a Joubert BB2 submarine model at depths near the free surface were measured through a captive model test with the scale ratio of 1/15. Based on the experiment, the pitch moment and heave force due to the "Tail suction effect", including the change in surge force with depth near the free surface, were quantitatively analyzed. The change of force and moment according to the relative position of the sail and the free surface was reviewed with the free surface waves generated for each depths. As a result, the angle of attack of the hull to counteract the pitch moment induced by the tail suction effect was derived. The effect of the hydrostatic moment component according to the angle of attack on the equilibrium of pitch moment was also taken into account. The control plane performance tests for the X-type rudder and sail plane were conducted in snorkel and surface depth conditions to figure out the control plane angles for the neutral level flight of the submarine at near free surface. The results of this study are expected to be used as a reference data for the neutral level flight of the submarine at near free surface operation in the free running model test as well as numerical studies.