• Title/Summary/Keyword: rubbing process

Search Result 130, Processing Time 0.024 seconds

Si Induced Polymer Based Alignment Layer for Liquid Crystal Orientations with High Electro-Optic Properties at Low Temperature (저온 공정의 Si을 이용한 PI 배향 막의 전기광학 특성 향상에 대한 연구)

  • Kim, Dai-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.677-681
    • /
    • 2013
  • Apart from the deposition of alignment layer, alignment process needs to be involved for alignment of liquid crystal (LC) molecules. To simplify manufacturing process, several method were used such as rubbing, ion-beam irradiation, UV irradiation, and lithography. But, eventually it needs another treatment for LC alignment. Here, we suggested Si induced polyimide (PI) alignment layer at low temperature. Using this method, we are able to eliminate the alignment process and found that the alignment and electro-optic performance are much better than that of the rubbed PI LC cells. Compared to the rubbed PI cells, the response time was decreased by 70% and C-V characteristics have hysteresis-free.

화학기계적 연마 가공에서의 윤활 특성 해석

  • 박상신;조철호;안유민
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.272-277
    • /
    • 1998
  • Chemical-Mechanical Polishing (CMP) refers to a material removal process done by rubbing a work piece against a polishing pad under load in the presence of chemically active, abrasive containing slurry. CMP process is a combination of chemical dissolution and mechanical action. The mechanical action of CMP involves tribology. The liquid slurry is trapped between the wafer(work piece) and pad(tooling) forming a lubricating film. For the first step to understand material removal rate of the CMP process, the lubricational analyses were done with commercial 100mm diameter silicon wafers to get nominal clearance of the slurry film, roll and pitch angle at the steady state. For this purpose, we calculate slurry pressure, resultant forces and moments at the steady state in the range of typical industrial polishing conditions.

  • PDF

Hydrodynamic Pressure and Shear Stress in Chemical Mechanical Polishing (화학기계적연마 공정의 윤활역학적 압력 및 전단응력 분포 해석)

  • 조철호;박상신;안유민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.179-184
    • /
    • 2000
  • Chemical Mechanical Polishing (CMP) refers to a material removal process done by rubbing a work piece against a polishing pad under load in the presence of chemically active and abrasive containing slurry. CMP process is a combination of chemical dissolution and mechanical action. The mechanical action of CMP involves hydrodynamic behavior. The liquid slurry is trapped between the work piece and pad forming a hydrodynamic film. For the first step to understand material removal mechanism of the CMP process, the hydrodynamic analysis is done with semiconductor wafer. Three-dimensional Reynolds equation is applied to get pressure distribution of the slurry film. Shear stress distributions on the wafer surface are also analyzed

  • PDF

Natural Indigo Dyeing by Using Glucose Reduction (포도당 환원을 이용한 천연 인디고 염색)

  • Shin, Youn-Sook;Cho, A-Rang;Yoo, Dong-Il
    • Textile Coloration and Finishing
    • /
    • v.21 no.3
    • /
    • pp.10-18
    • /
    • 2009
  • Dyeing process of the natural indigo powder onto ramie and silk fabrics was investigated by using glucose and calcium hydroxide as a reducing system. Effect of reduction and dyeing conditions such as temperature and time of reduction/dyeing, and concentrations of glucose and calcium hydroxide on the dyeing process were explored. Indigo powder was obtained by drying the conventional niram paste in an oven at $50^{\circ}C$. Color strength of the dyed fabrics was evaluated by K/S value measured at the wavelength of maximum absorption(${\lamda}$max). Munsell color coordinates(H V/C) were used to compare fabric colors of ramie and silk. Ramie fabric showed purple-blue color for all the temperature and time. On the contrary, silk fabric showed wide range of color including brown, brown-green, green at the different temperature. With the increase of K/S value, the coordinate of value(lightness) decreased for both of ramie and silk fabrics. The coordinate of hue(shade) changed drastically with the increase of K/S value for silk fabric, compared with that of ramie fabric which showed nearly constant value at the whole range of K/S value. Optimum concentrations of calcium hydroxide were for 6 g/L for ramie and 4 g/L for silk at $60^{\circ}C$ and 50 min. K/S value increased with the indigo concentration. Maximum K/S value was shown at $10{\sim}12$ g/L of glucose concentration. For both of ramie and silk fabrics, the colorfastness of washing and light was lower than that of rubbing. All the colorfastness values were improved with the increase of color strength.

Research on Continuous After-Treatment Process and System for DTP(Digital Textile Printing) (DTP(Digital Textile Printing)용 후처리 및 연속공정 시스템에 관한 연구)

  • Park, Soon-Young;Jeon, Dong-Won;Park, Yoon-Cheol;Lee, Beom-Soo;Cho, Hang-Sung
    • Journal of Fashion Business
    • /
    • v.15 no.5
    • /
    • pp.43-54
    • /
    • 2011
  • Digital Textile Printing(DTP) is appropriate for quick response system(QRS) and is closely connected with high value added fashion industry. Fashion products of high price are mainly silk and cotton. For high quality DTP products, it is important to optimize the parameters of media, pre and after-treatment, ink, printer, etc. DTP for these two fiber materials is also accompanied certainly with steaming as after-treatment process for coloration. Role of steam is like water in exhaustion dyeing. Steam can diffuse dye or ink in printing paste to fiber. Quality of DTP products depend on after-treatment processes such as steaming, washing, drying. Current production amount of DTP is smaller than one of conventional textile printing. However conventional after-treatment system has been using so far. This is mismatched with DTP in terms of process efficiency, spot work of small lot, quality control. In this study, continuous after-treatment system has been suitably designed for DTP that washing and drying are available after steaming. So, It is possible to improve efficiency of DTP process. Especially, the effects of after-treatment process, such as temperature of heat drum, steaming time on printability, color difference, color fastness were examined. Two types of samples(cotton knit and silk fabrics) were used. The results were obtained as follows : First, there is no a wide difference between the K/S values of cotton and silk treated with continuous after-treatment system and those of sample treated with conventional printing after-treatment method. So it is more effective to use the continuous after-treatment system than conventional printing after-treatment system in case of the daily throughput of 1,000 yards below. Second, after continuous after-treatment for DTP, K/S values were increased and lightness($L^*$) values were decreased. ${\Delta}E$ values were below 2.3. Third, DTP samples treated with continuous after-treatment system were tested for fastness(washing, light, rubbing). Grades of fastness(washing, light, rubbing) were above 3 grade.

Wear Characteristics of Submerged-Arc Cladding (서브머지드 아크 클래딩에 의한 표면 피복층의 마모특성)

  • 김권흡;강용규;권오양;육선평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.844-847
    • /
    • 2002
  • This paper is to investigate the wear behavior of submerged-arc clad materials by the wear test with a ball-on-disk type wear testing machine in air. The specimens were clad with Stoody105 alloy wire on a carbon steel (SM45C) substrate by submerged-arc cladding process under different welding parameters. The wear behavior of the cladding through ball-en-disk test has been studied under the wear load from 5N to 16N and sliding speed from 8cm/s to 35cm/s. The weight of the specimen loss was measured. Scanning electron micrographs of the worn surface show a layer of oxide film formed on the worn surface. Oxidation wear mechanism controls the wear process. The spalling of the oxide is caused by the repeated rubbing fatigue mechanism.

  • PDF

Wear Characteristics of Submerged-Arc Cladding (서브머지드 아크 클래딩에 의한 표면 피복층의 마모특성)

  • 김권흡;권오양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.179-186
    • /
    • 2003
  • This paper is to investigate the wear behavior of submerged-arc claddings by the wear test with a ball-on-disk type wear testing machine in air. The specimens were clad with Stoody105 alloy wire on a medium carbon steel (SM45C) substrate by submerged-arc cladding process under different welding parameters. The wear behavior of the cladding through ball-on-disk test has been studied under the wear load from 5 to 16 N and the sliding speed from 8 to 35 cm/s. The weight loss of the specimen was measured. Scanning electron micrographs of the worn surface show a layer of oxide film formed on the worn surface. Oxidation wear mechanism controls the wear process. The spatting of the oxide is caused by the repeated rubbing fatigue mechanism.

Improve The Contrast Ratio on 20.1' S-IPS TFT-LCD with Ion-Beam-Alignment Technology

  • Chen, Yu-Hsien;Liu, Shen-Fa;Li, Huai-An;Huang, I-Chen;Sun, Oliver;Jaw, Jyh-Hong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1605-1608
    • /
    • 2006
  • The contrast ratio, brightness, and uniformity of S-IPS panel, whose alignment process was employed by ion-beam-alignment (IBA) technology, were improved significantly compared with the convention rubbing's panel, because the light leakage has been reduced in dark state effectively. The IBA technology could generate a panel whose pretilt angle was stable and low after post-treatment process.

  • PDF

Statistical Modeling of Pretilt Angle in NLC on the Polyimide Surface

  • Kang, Hee-Jin;Lee, Jung-Hwan;Kim, Jong-Hwan;Yun, Il-Gu;Seo, Dae-Shik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1442-1446
    • /
    • 2006
  • In this paper, the response surface modeling of the pretilt angle control in the nematic liquid crystal (NLC) on the homogeneous polyimide surface with different surface treatment is investigated The rubbing strength and the hard baking temperature are considered as input factors. After the design of experiments is performed, the process model is then explored using the response surface methodology. The analysis of variance is used to analyze the statistical significance and the effect plots are also investigated to examine the relationship between the process parameters and the response.

  • PDF

Study on the Teeth Grinding Condition of SCM415H Gears (SCM 415H 기어의 치면 연삭조건에 관한 연구)

  • Kim, Lae-sung;Kim, Jongmin;Choi, Chang;Liang, Longjun;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.19-24
    • /
    • 2015
  • Gears are produced through a variety of methods. In general, a metal piece is formed into the general shape of a gear through rough cuts. The gear then moves on to a more precise machine that removes more material. Grinders work via abrasion, rubbing a rough surface against a work piece at such high speeds that it literally scrapes unwanted material away from the item. Since the grinder is spinning so fast, the material is removed very quickly. This allows a grinder to remove a very small amount without taking any unwanted material with it. This study investigates the effect of grinding process parameters like grinding spindle speed and table transfer speed on the gear grade and grinding efficiency.