• Title/Summary/Keyword: rubber surface

Search Result 696, Processing Time 0.027 seconds

Surface Degradation of Silicone Rubber Insulator by Salt-fog Test (Salt-fog 분무에 따른 실리콘 고무 애자의 표면열화)

  • 장동욱;박영국;강성화;이용희;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.509-512
    • /
    • 1999
  • The main problem in porcelain as a high voltage insulator is that the water film is felled on the insulator surface due to rain, flog, and dew. In the presence of contamination. leakage current increases which may lead to flashover that could be followed by an outage of the power system. These days, high voltage polymer outdoer insulators have been studied and widely used, because they have excellent electrical and mechanical properties, superior performance of flashover for contamination. light weight, easy installation or handling. no maintenance during service, competitive price, and so on. First of a1l the excellent performance of the silicone rubber in polluted and wet conditions is attributed to the ability of the material to maintain the hydrophobicity of the surface in the presence of severe contaminants and wet conditions. This is due to a low surface energy of the silicone rubber. But the leakage current and some surface discharge occurs on the surface of insulator when the insulator is used for a long time. So the leakage current and the surface discharge current are important lo estimate the condition of the silicone rubber surface. In this paper, the average leakage current the surface discharge current the surface rubber surface with the salt fog condition for the first stage.

  • PDF

Development of the Rubber Removal Primer to Reduce Pavement Damage for Removal of Rubber Deposits in Runways (활주로 고무 퇴적물 제거를 위한 포장 파손 저감형 사전처리제 개발 연구)

  • Kim, Young-Ung;You, Kwang-Ho;Cho, Nam-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.695-704
    • /
    • 2016
  • Rubber deposited during aircraft landing is known as the main cause of reducing surface friction force on wet surfaces. Thus, rubber deposits are removed at regular intervals for sae airplane landing. The high-pressure waterblast method, widely used for the removal of rubber deposits, is regarded as the main cause for the loss of surface material because in this method, water hits the surface directly at a high pressure. In this study, a rubber removal primer is developed to reduce surface damage by lowering the pressure of waterblast relatively during the removal of rubber deposits such that the deposits are removed efficiently even with a lower water pressure. To achieve this, basic materials appropriate for the primer were selected and their performance, penetration rate, and site applicability were evaluated. Based on the evaluations, the proportion of additive required for improving the performance of the basic materials was first determined. Then, the optimum mix ratio was derived through the evaluation of the effect on pavements, and the development of the rubber removal primer was completed.

Effects of Rubber Chips from Used Tires on Spots Turf Ground as Soil Conditioner (Rubber chip의 경기장 지반 물리성 개선과 잔디 생육에 미치는 효과)

  • ;;;David Minner
    • Asian Journal of Turfgrass Science
    • /
    • v.16 no.1
    • /
    • pp.19-30
    • /
    • 2002
  • This study was conducted to investigated the effects of rubber chips from used tires on sports turf ground as soil conditioner to improve soil physical properties. The release of heavy metal ions was detected to check the soil contamination by incorporation of recycled rubber chips with topsoil. The effects of the chips were also evaluated as topdressing material to improve surface resilience. The rate of rubber chips showed a positive relationship with soil temperature increasement. Incorporation of rubber chips increased soil temperature on surface at 2.5 cm-depth. The rates of rubber chip showed a negative relationship with ground cover rate of turfgrass in early growth season. However, after 20 weeks, treatment of 10% rubber chips at 2.5 cm-depth showed a prominent cover rate of 70% which was not significantly different with untreated control. Incorporation of rubber chips within topsoil seemed to reduce soil compaction, but the effects was not prominent on physical properties. Rubber chips did not affect chemical properties and heavy metal contamination to soil environment. Rubber chips improved resilience of the compacted ground surface as topdressing material, this effect was prominent when aerification practise was preceded.

Electrical Properties of Silicone Rubber with Different Particle Size and Amount of ATH (ATH의 입자크기 및 첨가량에 따른 실리콘 고무의 전기적 특성)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang;Myung, In-Hae;Lee, Tae-Hui;Lee, Tae-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.227-230
    • /
    • 2003
  • Silicone rubber has very excellent chemical stability and hydrophobicity. A hydrophobic surface can prevent the formation of continuous water films on the surface in wet and heavily contaminated conditions. This phenomenon contributes to the suppression of leakage current and partial discharges on insulator surfaces. Silicone rubber has been used much for housing materials of polymer insulators. ATH is added to the silicone rubber for improvement of its resistance against surface discharge. In this paper, ATH with different particle size and content was added to the silicone rubber during compounding. Silicone rubber was deteriorated by a corona treatment. Hydrophobicity recovery rate after corona treatment and arc resistance of silicone rubber were investigated. Hydrophobicity recovery rate of silicone rubber was evaluated by the measurement of contact angle. Arc resistance was evaluated by measuring weight loss of silicone rubber after arc resistance test. It was observed that the hydrophobicity recovery rate and arc resistance of silicone rubber were different when different particle size and content of ATH were added.

  • PDF

Study on the Adhesive Properties of Polyesters Reinforcing Materials

  • Krump, H.;Hudec, I.;Cernak, M.;Janypka, P.
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.192-194
    • /
    • 2002
  • Polyester cord yarns have been treated in an atmospheric-pressure nitrogen plasma reactor in order to enhance their adhesion to rubber. A thin layer or the plasma was generated in the close vicinity of the yam surface using various types or surface discharge. To assess the effect of the plasma treatment on fiber surface properties, the cord thread/rubber matrix adhesion values measured using the untreated and threads cord threads were compared. The static and dynamic adhesion of the cord thread to rubber was characterized by using the standard Henley test. The dynamic adhesion values for the reference and plasma treated fiber were $7,3{\pm}1,2\;N$ and $83,5{\pm}3,5\;N$. The surface properties were investigated by scanning electron microscopy, infrared spectroscopy and electron spin resonance spectroscopy. It is concluded that both polar group interactions and increased surface area of the fibers are responsible for the improved adhesive strength.

The Effect of Surface Area of Silicas on Their Reinforcing Performance to Styrene-butadiene Rubber Compounds

  • Ryu, Changseok;Kim, Sun Jung;Kim, Do Il;Kaang, Shinyoung;Seo, Gon
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.128-137
    • /
    • 2016
  • The effect of the surface area of silicas on their reinforcing performance to styrene-butadiene rubber (SBR) compounds was systematically investigated. The feasibility of the Brunauer-Emmett-Teller surface area ($S_{BET}$) as a parameter representing the characteristics of the silicas was discussed compared to the mesopore volume, c value, oil absorption, and uptake of silane. The increase in $S_{BET}$ of silicas caused a considerable increase in Mooney viscosity, minimum torque, and hysteresis loss of the silica-filled SBR compounds, while significantly enhancing their abrasion property. These changes were explained by the attrition between the hydrophilic silica surface and the hydrophobic rubber chains. As expected, the change in $S_{BET}$ did not induce any remarkable changes in the cure, processing, tensile, and dynamic properties of the silica-filled SBR compounds because the crosslinking density of the rubber chains mainly determined these properties.

Adhesion Characteristics of Semiconductive and Insulating Silicone Rubber by Oxygen Plasma Treatment (산소 플라즈마 처리에 의한 반도전-절연 실리콘 고무의 접착 특성)

  • Lee Ki- Taek;Huh Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.153-157
    • /
    • 2006
  • In this work, the effects of plasma treatment on surface properties of semiconductive silicone rubber were investigated in terms of X-ray photoelectron spectroscopy (XPS) and contact angles, The adhesion characteristics of semiconductive-insulating interface layer of silicone rubber were studied by measuring the T-peel strengths, The results of the chemical analysis showed that C-H bonds were broken due to plasma discharge and Silica-like bonds(SiOx, x=3${\~}$4) increased, It is thought that semiconductive silicone rubber surfaces treated with plasma discharge led to an increase in oxygen-containing functional groups, resulting in improving the degree of adhesion of the semiconductive-insulating interface layer of silicone rubber. However, the oxygen plama for 20 minute produces a damaged oxidized semiconductive silicone rubber layer, which acts as a weak layer producing a decrease in T-peel strength, These results are probably due to the modifications of surface functional groups or polar component of surface free energy of the semiconductive silicone rubber.

Studios on the Thin Rubber Coated Fabrics. (part 3) Physical properties of the Surface and Back Coated Fabrics with Rubber (박막(薄膜) Rubber Coated Fabrics에 관(關)한 연구(硏究) (제3보(第3報)) 각종(各種) 원반(原反)에 천연(天然) 및 합성(合成)고무를 양면(兩面) 도포(塗布)했을 때의 물리적성능(物理的性能)에 대(對)하여)

  • Kim, Joon-Soo;Lee, Myung-Whan;Yum, Hong-Chan;Lee, Chin-Bum;Rhim, Kwang-Kew
    • Elastomers and Composites
    • /
    • v.2 no.1
    • /
    • pp.31-36
    • /
    • 1967
  • As a series of the studies of thin rubber coated fabrics, the experiments were concentrated on the investigation of the physical properties of the surface and back coated fabrics with natural and synthetic rubber. Cotton poplin and nine other cotton shootings were used as a base fabric and both sides of fabric, face and back, were coated by means of topping or spreading process. The physical properties of finished material were broadly investigated especially in view of the quality requirements of the poncho.

  • PDF

MONO-MATERIAL PRSSURE-CONDUCTIVE RUBBER SENSOR WITH TEMPERATURE SENSITIVITY FOR REALIZING ARTIFICIAL SKIN SENSING

  • Yuji, Jun-ichiro;Shida, Katsunori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1314-1317
    • /
    • 1997
  • For realizing artificial skin sensing as a final goal, a mono-material pressure-conductive rubber sensor which is also sensitive for temperature is described. Firstly, discimination of the hardness and the thermal property of material using a proposed sensor is presented. Furthermore, a tactile sensor constints of four pressure-conductive rubber sensor to discriminate surface model which imitaties the surface roughness of material is proposed.

  • PDF

Properties of Silicone Rubber According to the Addition of Different Particle Size of ATH (ATH 의 입도에 따른 실리콘 고무의 특성)

  • Park, Hyo-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang;Kim, Dae-Whan;Lee, Hoo-Bum;Oh, Se-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.216-219
    • /
    • 2002
  • Much quantity of anti-tracking agent, ATH is added to the silicone rubber for the protection of silicone rubber against surface discharge. Hydrophobicity recovery properties of silicone rubber could be different by the content, surface treatment state and particle size of ATH. Because hydrophobicity of silicone rubber is depend much on the surface state of ATH. In this paper, the properties of silicone rubber is investigated according to the addition of different particle size of ATH to the silicone rubber. Hydrophobicity recovery properties and arc resistance of silicone rubber were investigated according to the addition of different particle size of ATH. Hydrophobicity recovery properties of silicone rubber were evaluated by the measurement of contact angle.

  • PDF