• Title/Summary/Keyword: rubber particle

Search Result 168, Processing Time 0.027 seconds

A Study on the Silicone Rubber of Sabot Assembly for the Velocity Multiplication of Mini Ball (소형구의 속도증폭을 위한 사보 조립체의 실리콘고무 특성 연구)

  • Kim, Young-Min;Jin, Doo-Han;Chung, Dong-Teak
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.395-401
    • /
    • 2015
  • A mini ball launch system was developed for the study of dynamic fracture of ceramic materials. The principle of velocity multiplication system is similar to two stage gun. The plastic sabot assembly houses steel plunger and the void filled with silicone rubber. The sabot is stopped by the stopper block then the steel plunger inside the sabot compress the silicone rubber to high pressure. Then the compressive energy of the silicone rubber is transferred to the ball. More than ten times of initial speed was attained. In this study, most effective silicone rubber for the highest final speed was chosen out of three different varieties by launch tests.

The Effect of the Shape of the Precured CIIR on the Physical Properties of the BR/CIIR Composites

  • Pyo, Kyeongdeok;Park, Chacheol
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.258-264
    • /
    • 2015
  • Rubber composites were prepared by precured CIIR pulverized at knead shear force in order to research the effects of the BR/PCP composites. The particle size of domain in BR/CIIR composites was decreased and homogeneously dispersed by the precured CIIR pulverized. However, it was difficult to use the product when the content is 40 phr and precured of 40%. BR/PCP composites have improved mechanical properies as compared that of the addition of simply cut chip composite.

Impact fracture behavior on particle volume fraction of nano silica composite materials (입자 함유율의 변화에 따른 나노 실리카 복합재료의 충격파괴거동)

  • LEE, Jung-Kyu;KOH, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.3
    • /
    • pp.454-460
    • /
    • 2015
  • The present study is undertaken to evaluate the effect of volume fraction on the results of Charpy impact test for the rubber matrix filled with nano sized silica particles composites. The Charpy impact tests are conducted in the temperature range $0^{\circ}C$ and $-10^{\circ}C$. The range of volume fraction of silica particles tested are between 11% to 25%. The critical energy release rate $G_{IC}$ of the rubber matrix composites filled with nano sized silica particles is affected by silica volume fraction and it is shown that the value of $G_{IC}$ decreases as volume fraction increases. In regions close to the initial crack tip, fracture processes such as matrix deformation, silica particle debonding and delamination, and/or pull out between particles and matrix which is ascertained by SEM photographs of Charpy impact fracture surfaces.

Influence of Filler Particle Size on Behaviour of EPDM Rubber for Fuel Cell Vehicle Application under High-Pressure Hydrogen Environment (수소전기차용 EPDM 고무의 충전재 입자 크기별 고압 수소 환경에서의 거동 연구)

  • KIM, KEEJUNG;JEON, HYEONG-RYEOL;KANG, YOUNG-IM;KIM, WANJIN;YEOM, JIWOONG;CHOI, SUNG-JOON;CHO, SUNGMIN
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.5
    • /
    • pp.453-458
    • /
    • 2020
  • In this study, ethylene-propylene-diene monomer (EPDM) rubbers reinforced with various particle size of carbon black were prepared and tested. We followed recently published CSA/ANSI CHMC2 standard "the test methods for evaluating material compatibility in compressed hydrogen applications-polyemr". Measurement of change in hardness, tensile strength and volume were performed after exposure to maximum operating pressure, 87.5 MPa, for 168 hours (1 week). Once EPDM was exposed to high-pressure hydrogen, the samples experience volume increase and degradation of the physical properties. Also, after the dissolved hydrogen was fully eliminated from the specimens, the hardness and the tensile properties were not recovered. The rubber reinforced with smaller sizes of carbon black particles showed less volume expansion and decrease of physical properties. As a result, smaller particle size of carbon black filler led to more resistance to high-pressure hydrogen.

Effects of Particle Size and Structure of Fillers on the Friction and Wear Behavior of Filled Elastomer (충전제의 입자크기 및 구조에 따른 고무 배합물의 마찰 마모특성)

  • Kaang, Shin-Young;Ryu, Chang-Seok;Hong, Chang-Kook;Moon, Chae-Woo
    • Elastomers and Composites
    • /
    • v.41 no.3
    • /
    • pp.194-204
    • /
    • 2006
  • The effects of the particle size and the structure of carbon blacks on the friction and the wear behavior of filled natural rubber were investigated in this study. The particle size and the structure of carbon black had a significant effect on the wear rates and the worn surface pattern, and the effect of them on abrasion resistance should be considered for the optimum design of desired wear properties. Ten carbon blacks with various sizes and structures are mixed with natural rubber in order to investigate the effects on the wear rate ($W_R$). The friction and the wear behavior were examined by self-made blade type friction-wear abrader, and the ,elation with characteristic parameter (${\psi}=\sqrt{{N_2^2}+{DBP^2}}$), obtained from the particle size and the structure, was studied. The wear rate ($W_R$) had a Power Law relation with the frictional work ($W_f$) and it was inversely proportional to the characteristic parameter of carbon black. It means that smaller particle size and better structure development of carbon black resulted in improved abrasion resistance.

Linear viscoelastic behavior of acrylonitrile-butadiene-styrene(ABS) polymers in the melt: Interpretation of data with a linear viscoelastic model of matrix/core-shell modifier polymer blends

  • Park, Joong-Hwan;Ryu, Jong-Hoon;Kim, Sang-Yong
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.2
    • /
    • pp.135-141
    • /
    • 2000
  • The linear viscoelastic behavior of acrylonitrile-butadiene-styrene (ABS) polymers with different rubber content has been investigated in the frame of a linear viscoelastic model, which takes into account the inter-connectivity of the dispersed rubber particles. The model developed in our previous work has been shown to properly predict the low frequency plateau for the storage modulus, which is generally observed in polymer blends containing core-shell-type impact modifiers. In the present study, further experiments have been carried out on ABS polymers with different rubber content to verify the validity of our linear viscoelastic model. It has been found that our model describes quite properly the rheological behavior of ABS polymers with different rubber content, especially at low frequencies. The experimental data confirm that our model describes the rheological properties of rubber-modified thermoplastic polymers with strong adhesion at the particle/matrix interface more accurately than the Palierne model.

  • PDF

A Study on Effect of Inorganic Fillers to Rubber Properties (고무물성(物性)에 미치는 국산(國産) 무기충전제(無機充塡劑)의 효과(效果)에 관(關)한 연구(硏究))

  • Kim, Ki-Joo;Kim, Jong-Seok;Ahn, Byung-Kook;Suh, Soo-Kyo;Chang, Young-Jae;Kang, Kyoung-Ho
    • Elastomers and Composites
    • /
    • v.24 no.4
    • /
    • pp.276-289
    • /
    • 1989
  • This study deals with both effects of inorganic fillers to vulcanized rubbers such as NR, CR, EPDM, NBR & SBR and inorganic characteristics of domestic fillers in comparision with hard clay produced in the USA. The results were as follows. 1. Main ingredient of domestic clay "Ha-dong clay" was Halloysite, "No-ha Island" was Pyrophyllite with $\alpha$-Quartz, and both of "Hard clay" & "Hwa-soon clay" were proved to be Kaolinite by XRD, DT-TGA and chemical analysis by XRF. 2. Tensile strength value of SBR compounded with these fillers, was Hard clay $146kg\;f/cm^2$, Kaolinite $123kg\;f/cm^2$, Pyrophyllite $82kg\;f/cm^2$, Halloysite $80kg\;f/cm^2$, precipitated $CaCO_3\;27kg\;f/cm^2$, and ground $CaCO_3$ was $21kg\;f/cm^2$. These results showed the increase of seven times according to filler species. 3. The physical properties of non-crystalline rubbers, such as SBR, NBR & EPDM, compared with NR & CR, have been considerably changed according to crystalline phase, particle size, shape and surface structure of fillers. Especially, tensile strength value in case of SBR & EPDM, was differentiated about 1.5 times by the particle size of fillers. 4. In SBR, physical properties of rubber compounded with Kaolinite which was surface treated with fatty acid and silane, almost approach to the value of hard clay. 5. Delayed cure time of Kaolinite and decrease of rubber properties by $CaCO_3$ can be improved by blending kaolinite & $CaCO_3$ in the ratio of 2:1.

  • PDF

Small Angle X-ray Scattering Studies on Deformation Behavior of Rubber Toughened Polycarbonate (소각 X-선 산란을 이용한 고무입자로 강인화된 폴리카보네이트의 변형에 관한 연구)

  • Cho, Kilwon;Choi, Jaeseung;Yang, Jaeho;Kang, Byoung Il
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.19-26
    • /
    • 2002
  • In order to study the toughening mechanism of rubber modified polycarbonate, the sequence of development of micro-voids was investigated by real-time small angle X-ray scattering with Synchrotron radiation (SR-SAXS). The used test method was wedge test. The scattering intensity increases with increasing penetration depth of wedge, i.e. applied strain. The increase is due to the micro-void formation during deformation. This micro-void was uniformly developed in matrix and was different from large-void due to internal cavitation of rubber particle and/or debonding between rubber particle and polycarbonate matrix. The micro-void was developed at the critical strain and the radius of micro-void is around $600{\AA}$. Above the critical strain the size of micro-void remains almost constant with increasing applied strain. However, the population of micro-void increased with applied strain.

  • PDF

Wear Characteristics of Rubber-Seal for Inflow of Dust Particle in Automobile Chassis System PART I : Analysis of Dust Particle for Inflow in Automobile Chassis System (자동차 섀시 시스템에 유입되는 먼지입자에 의한 고무-시일 부품의 마멸특성 PART I : 자동차 섀시 시스템에 유입되는 먼지입자분석)

  • Lee, Young-Ze;Chung, Soon-Oh;Won, Tae-Yeong;Kim, Gi-Hoon;Kim, Dae-Sung
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.120-124
    • /
    • 2009
  • In automobile chassis system, several environmental factors weaken durability of automobile's components. The environmental factors are temperature, humidity, intensity of radiation and dust particle inflow. Especially, dust particle inflow leads to increase in friction and wear of automobile's components. The wear of automobile's component leads to increase in noise and exerts a bad influence on life of components. In this study, dust particles were investigated for study on the influence of dust particle inflow. Dust particles are collected on urban area, rural area and highway in China. The size of dust particle is analyzed using the image plus program, and the element of dust particle is analyzed using the SEM and EDX. The elements of dust particle are $SiO_2$ and $Al_{2}O_{3}$. The other elements(Na, Ca, Cl etc..) are detected on urban area and highway.

PC/ASA blends having enhanced interfacial and mechanical properties

  • Kang, M.S.;Kim, C.K.;Lee, J.W.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Blend of bisphenol-A polycarbonate (PC) and (acrylonitrile-styrene-acrylic rubber) terpolymer (ASA) having excellent balance in the interfacial properties and mechanical strength was developed for the automobile applications. Since interfacial adhesion between PC and styrne-acrylonitrile copolymer (SAN) matrix of ASA is not strong enough, two different types of compatibilizers, i.e, diblock copolymer composed of tetramethyl polycarbonate (TMPC) and SAN (TMPC-b-SAN) and poly(methyl methacrylate) (PMMA) were examined to improve interfacial adhesion between PC and SAN. TMPC-b-SAN was more effective than PMMA in increasing interfacial adhesion between PC and SAN matrix of ASA (or weld-line strength of PC/ASA blend). When blend composition was fixed, PC/ASA blends exhibited similar mechanical properties except impact strength and weld-line strength. Impact strength of PCI ASA blend at low temperature was influenced by rubber particle size and its morphology. PC/ASA blends containing commercially available PMMA as compatibilizer also exhibited excellent balance in mechanical properties and interfacial adhesion.