• Title/Summary/Keyword: rsm method

Search Result 501, Processing Time 0.027 seconds

Optimization of operating parameters to remove and recover crude oil from contaminated soil using subcritical water extraction process

  • Taki, Golam;Islam, Mohammad Nazrul;Park, Seong-Jae;Park, Jeong-Hun
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.175-180
    • /
    • 2018
  • Box-Behnken Design (BBD) under response surface methodology (RSM) was implemented to optimization the operating parameters and assess the removal and recovery efficiencies of crude oil from contaminated soil using subcritical water extraction. The effects of temperature, extraction time and water flow rate were explored, and the results indicate that temperature has a great impact on crude oil removal and recovery. The correlation coefficients for oil removal ($R^2=0.74$) and recovery ($R^2=0.98$) suggest that the proposed quadratic model is useful. When setting the target removal and recovery (>99%), BBD-RSM determined the optimum condition to be a temperature of $250^{\circ}C$, extraction time of 120 min, and water flow rate of 1 mL/min. An experiment was carried out to confirm the results, with removal and recovery efficiencies of 99.69% and 87.33%, respectively. This result indicates that BBD is a suitable method to optimize the process variables for crude oil removal and recovery from contaminated soil.

Prediction of Pollutant Emission Distribution for Quantitative Risk Assessment (정량적 위험성평가를 위한 배출 오염물질 분포 예측)

  • Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.48-54
    • /
    • 2016
  • The prediction of various emissions from coal combustion is an important subject of researchers and engineers because of environmental consideration. Therefore, the development of the models for predicting pollutants very fast has received much attention from international research community, especially in the field of safety assessment. In this work, response surface method was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of a drop tube furnace (DTF) to predict the spatial distribution of pollutant concentrations as well as final ones. The distribution of carbon dioxide in DTF was assumed to have Boltzman function, and the resulted function with parameters of a high $R^2$ value facilitates predicting an accurate distribution of $CO_2$. However, CO distribution had a difference near peak concentration when Gaussian function was introduced to simulate the CO distribution. It might be mainly due to the anti-symmetry of the CO concentration in DTF, and hence Extreme function was used to permit the asymmetry. The application of Extreme function enhanced the regression accuracy of parameters and the prediction was in a fairly good agreement with the new experiments. These results promise the wide use of statistical models for the quantitative safety assessment.

Removal of Uranium from Uranium Plant Wastewater Using Zero-Valent Iron in an Ultrasonic Field

  • Li, Jing;Zhang, Libo;Peng, Jinhui;Hu, Jinming;Yang, Lifeng;Ma, Aiyuan;Xia, Hongying;Guo, Wenqian;Yu, Xia
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.744-750
    • /
    • 2016
  • Uranium removal from uranium plant wastewater using zero-valent iron in an ultrasonic field was investigated. Batch experiments designed by the response surface methodology (RSM) were conducted to study the effects of pH, ultrasonic reaction time, and dosage of zero-valent iron on uranium removal efficiency. From the experimental data obtained in this work, it was found that the ultrasonic method employing zero-valent iron powder effectively removes uranium from uranium plant wastewater with a uranium concentration of $2,772.23{\mu}g/L$. The pH ranges widely from 3 to 7 in the ultrasonic field, and the prediction model obtained by the RSM has good agreement with the experimental results.

Design of HEV-Relay to Improve Impact and Bounce Characteristics (충격 및 바운스 특성 향상을 위한 HEV-Relay의 설계)

  • Ko, Youn-Ki;Cho, Sang-Soon;Huh, Hoon;Lee, Sang-Yoeb;Park, Hong-Tae;Oh, Il-Sung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.491-496
    • /
    • 2008
  • A HEV-relay plays a significant role as a mechanical switch which determines the operation of a gasoline engine or an electric motor in a hybrid electric vehicle (HEV). The HEV-relay has critical two problems in the operating process. First, the unstable current can occur in the operating process of the HEV-relay due to the severe bounce between moving and fixed electrode. Second, noises occur due to impact between electrodes in HEV-relay. In this research, spring properties such as stiffness and initial compression force, and electrode shape are designed to reduce the bounce time and noises caused by impact between moving and fixed electrode. The operating process of HEV-relay is simulated using LS-DYNA3D as explicit finite element code. The optimum spring properties are determined using the response surface method (RSM) as the design methodology, and the electrode shape is newly designed through the modifying the stiffness of moving and fixed electrode.

  • PDF

Effects of coating material and cutting parameters on the surface roughness and cutting forces in dry turning of AISI 52100 steel

  • Keblouti, Ouahid;Boulanouar, Lakhdar;Azizi, Mohamed Walid;Yallese, Mohamed Athmane
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.519-526
    • /
    • 2017
  • In the present paper, the effects of cutting parameters and coating material on the performances of cutting tools in turning of AISI 52100 steel are discussed experimentally. A comparative study was carried out between uncoated and coated (with TiCN-TiN coating layer) cermet tools. The substrate composition and the geometry of the inserts compared were the same. A mathematical model was developed based on the Response Surface Methodology (RSM). ANOVA method was used to quantify the effect of cutting parameters on the machining surface quality and the cutting forces. The results show that feed rate has the most effect on surface quality. However, cutting depth has the significant effect on the cutting force components. The effect of coating layers on the surface quality was also studied. A lower surface roughness was observed when using PVD (TiCN-TiN) coated insert. A second order regression model was developed and a good accuracy was obtained with correlation coefficients in the range of 95% to 97%.

Doxorubicin Productivity Improvement by the Recombinant Streptomyces peucetius with High-Copy Regulatory Genes Cultured in the Optimized Media Composition

  • PARK, HEE-SEOP;KANG, SEUNG-HOON;PARK, HYUN-JOO;KIM, EUNG-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.66-71
    • /
    • 2005
  • Doxorubicin is a clinically important anticancer polyketide compound that is typically produced by Streptomyces peucetius var. caesius. To improve doxorubicin productivity by S. peucetius, a doxorubicin pathway-specific regulatory gene, dnrI, was cloned into a high-copy-number plasmid containing a catechol promoter system. The S. peucetius containing the recombinant plasmid exhibited approximately 9.5-fold higher doxorubicin productivity compared with the wild-type S. peucetius. The doxorubicin productivity by this recombinant S. peucetius strain was further improved through the optimization of culture media composition. Based on the Fractional Factorial Design (FFD), cornstarch, $K_2HPO_4$, and $MgSO_4$ were identified to be the key factors influencing doxorubicin productivity. The Response Surface Method (RSM) results based on 20 independent culture conditions with varying amounts of key factors predicted the highest theoretical doxorubicin productivity of 11.1 mg/l with corn starch of 46.33 g/l, $K_2HPO_4$ of 4.63 g/l, and $MgSO_4$ of 9.26 g/l. The doxorubicin productivity of the recombinant S. peucetius strain with the RSM-based optimized culture condition was experimentally verified to be 11.46 mg/l, which was approximately 30.8-fold higher productivity compared with the wild-type S. peucetius without culture media optimization.

Optimization Methodology Integrated Data Mining and Statistical Method (데이터 마이닝과 통계적 기법을 통합한 최적화 기법)

  • Song, Suh-Ill;Shin, Sang-Mun;Jung, Hey-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.4
    • /
    • pp.33-39
    • /
    • 2006
  • These days manufacture technology and manufacture environment are changing rapidly. By development of computer and enlargement of technique, most of manufacture field are computerized. In order to win international competition, it is important for companies how fast get the useful information from vast data. Statistical process control(SPC) techniques have been used as a problem solution tool at manufacturing process until present. However, these statistical methods are not applied more extensively because it has much restrictions in realistic problems. These statistical techniques have lots of problems when much data and factors are analyzed. In this paper, we proposed more practical and efficient a new statistical design technique which integrated data mining (DM) and statistical methods as alternative of problems. First step is selecting significant factor using DM feature selection algorithm from data of manufacturing process including many factors. Second step is finding optimum of process after estimating response function through response surface methodology(RSM) that is a statistical techniques

Efficient Designs to Develop a Design Space in Quality by Design (설계기반 품질고도화에서 디자인 스페이스 구축을 위한 효율적인 실험계획)

  • Chung, Jong Hee;Kim, Jinyoung;Lim, Yong B.
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.523-535
    • /
    • 2019
  • Purpose: We research on the efficient response surface methodology(RSM) design to develop a design space in Quality by Design(QbD). We propose practical designs for the successful construction of the design space in QbD by allowing different number of replicates at the box points, star points, and the center point in the rotatable central composite design(CCD). Methods: The fraction of design space(FDS) plot is used to compare designs efficiency. The FDS plot shows the fraction of the design space over which the relative standard error of predicted mean response lies below a given value. We search for practical designs whose minimal half-width of the tolerance interval per a standard deviation is less than 4.5 at 0.8 fraction of the design space. Results: The practical designs for the number of factors between two and five are listed. One of the designs in the list could be chosen depending on the experimental budget restriction. Conclusion: The designs with box points replications are more efficient than those with the star points replication. The sequential method to establish a design space is illustrated with the simulated data based on the two examples in RSM.

Analyzing Effective Factors on Hydrogen Release Based on Response Surface Method and Analysis of Variance (반응표면법과 ANOVA 기반의 수소 누출에 대한 유효인자 분석)

  • JUNSEO LEE;SEHYEON OH;SEUNGHYO AN;EUNHEE KIM;BYUNGCHOL MA
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.712-721
    • /
    • 2023
  • While hydrogen is widely used, it has a low minimum ignition energy, raising safety concerns when using it. This research studied which parameters are the key variables in the hydrogen release and diffusion. These parameters were divided into six process variables in the initial release and two environmental variables in the dispersion. One hundred and twenty cases were selected through design of experiment, and the end-point in each case were analyzed using PHAST. Afterwards, an end-point prediction model was developed using RSM and ANOVA, and the impact of each variable on the endpoint was analyzed. As a result, the influence of eight variables was graded. The nozzle diameter had the greatest influence on the end-point, while the pipe roughness coefficient had no effect on the end-point. It is expected that these results will be used as basic data to improve safety across all fields of hydrogen handling facilities.

Optimization of Bleaching Conditions for Stain Removal in Japanese Hackberry (Celtis sinensis Persoon) Using Response Surface Methodology (반응표면분석법을 이용한 팽나무(Celtis sinensis Persoon)의 최적 변색제거조건 결정)

  • Kim, Sung-Hwan;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.191-198
    • /
    • 2010
  • This research was performed to investigate the effect of hydrogen peroxide on the stain removal in japanese hackberry. Response surface method (RSM) was used to optimize the bleaching conditions such as reaction temperature, reaction time and the concentration of hydrogen peroxide. Fifteen different bleaching conditions were selected according to $2^3$ factorial central composite design (CCD). The bleaching effect were evaluated by lightness differences of wood surface before and after the bleaching. The RSM model was determined and its $R^2$ values were 0.93, showing it well represented the bleaching effect. The most affecting factor on the stain removal was the concentration of hydrogen peroxide, followed by reaction time and reaction temperature. Second degree of concentration was proved to have an effect on the bleaching. Bleaching rates above 3% concentrations of hydrogen peroxide were tended to be slightly decreased, and low bleaching effect was found at $20^{\circ}C$. The determined RSM model may offer very practical ways to obtain the desired levels of bleaching because it offers multiple solutions.