• Title/Summary/Keyword: rsm method

Search Result 498, Processing Time 0.033 seconds

Commercial Finite Element Program-based Reliability Analysis of Dam Structures (상용 유한요소 프로그램에 기초한 댐 구조물의 신뢰성해석)

  • 허정원;이정학
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.103-110
    • /
    • 2003
  • A hybrid structural reliability analysis method that integrates a commercial finite element program and a reliability analysis algorithm is proposed to estimate the safety of real structures in this paper. Since finite element method (FEM) is most commonly and widely used in the analysis and design practice of real structures, it appears to be necessary to use general FEM program in the structural reliability analysis. In this case, simple conventional reliability methods cannot be used because the limit state function can only be expressed in an algorithmic form. The response surface method(RSM)-based reliability algorithm with the first-order reliability method (FORM) found to be ideal in this respect and is used in this paper. The intention of use of RSM is to develop, albeit approximately, an explicit expression of the limit state function for real structures. The applicability of the proposed method to real structures is examined with help of the example in consideration of a concrete dam. Both the strength and serviceability limit states are considered in this example.

  • PDF

Determination of Optimal Cutting Conditions in Milling Process using Multiple Design of Experiments Technique (밀링 가공 공정에서 복합실험계획법을 이용한 최적 절삭조건 결정)

  • Kim, Yong-Sun;Kwon, Won-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.232-238
    • /
    • 2011
  • In the present study, Taguchi method is used to determine the rough region first, followed by RSM technique to determine the exact optimum value during milling on a machining center. A region reducing algorithm is applied to narrow down the region of the Taguchi method for RSM. The result from the Taguchi method is fed to train the artificial neural network (ANN), whose optimum value is used to drive the region reducing algorithm. The proposed algorithm is tested under different cutting condition and results show that the introduced algorithm works well during milling process. It is also shown that theoretically obtained optimal cutting condition is very close to experimentally obtained result.

Design optimization of Single-Phase induction motor Using Response Surface Method (반응표면법을 이용한 단상유도모터의 최적설계)

  • Shim, Ho-Kyoung;Kang, Je-Nam;Kim, Chwa-Il;Wang, Se-Myung;Kim, Jong-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.681-683
    • /
    • 2003
  • The response surface method (RSM) became a popular meta modeling technique, but it always contains the approximation error. Instead of the conventional RSM, the moving least squares method (MLSM) was used to get more accurate models. The characteristics of a single-phase induction motor for the reciprocal compressor are analyzed by using the lumped method Program (LMP). The proposed method is applied to a single-phase induction motor for increasing the efficiency.

  • PDF

Modeling of Sand Blasting Process for Anti-Glare Surface Treatment of Display Glass (디스플레이 유리의 눈부심 방지 표면처리를 위한 샌드 블래스팅 공정의 모형화)

  • Min, Chul Hong;Kim, Tae Seon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.303-308
    • /
    • 2018
  • Currently hydrofluoric acid (HF) based glass etch method is widely used for anti-glare (AG) surface treatment since it can effectively alleviate the specular reflection problem with relatively low processing cost. However, due to the environmental regulation and safety problem, it is essential to develop alternative technology to replace this method. For this, in this paper, we propose sand blasting based AG surface treatment method for display glass. To characterize the sand blasting process, surface roughness, haze, surface durability, and flatness are considered as process outputs and central composite design (CCD) method and response surface model (RSM) method are applied to model each process output. Models for surface roughness and haze showed 96.44% and 97.24% of R-squared values, respectively and they can be applied to optimize AG surface treatment process for various haze level requirements of display industries.

A Design Method Considering Torque and Torque-ripple of Interior Permanent Magnet Synchronous Motor by Response Surface Methodology (반응표면분석법에 의한 매입형영구자석동기전동기의 토크와 토크리플을 고려한 설계기법)

  • Baek, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.557-564
    • /
    • 2019
  • The characteristics of the torque and torque ripple of Interior Permanent Magnet Synchronous Motor(IPMSM) are influenced by the size and position of the rotor magnet and the size of the stator slot. This paper deals with the optimal design method for improving torque and torque ripplerate for IPMSM using Response Surface Methodology(RSM). Two objective functions of torque output and torque ripple were derived from the sensitivity analysis by Plackett-Burmann(PB) for the characteristic variables affecting torque and torque ripple. Secondary characteristic variables were selected from the derived objective function and RSM secondary regression model function was estimated by the experiment schedule and analysis results according to the Central Composite Design (CCD). The reliability of the secondary regression model was verified using ANOVA table. The analysis according to the experimental schedule was verified by JMAG(Ver. 18.0) which is Finite Element Method(FEM) software. The torque output of IPMSM applied with final characteristic variables was increased torque output by 11.5 % and the torque ripplerate was reduced by 9.1 %.

An Improved Structural Reliability Analysis using Moving Least Squares Approximation (이동최소제곱근사법을 이용한 개선된 구조 신뢰성 해석)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.835-842
    • /
    • 2008
  • The response surface method (RSM) is widely adopted for the structural reliability analysis because of its numerical efficiency. However, the RSM is still time consuming for large-scale applications and sometimes shows large errors in the calculation of sensitivity of reliability index with respect to random variables. Therefore, this study proposes a new RSM in which moving least squares (MLS) approximation is applied. Least squares approximation generally used in the common RSM gives equal weight to the coefficients of the response surface function (RSF). On the other hand, The MLS approximation gives higher weight to the experimental points closer to the design point, which yields the RSF more similar to the limit state at the design point. In the procedure of the proposed method, a linear RSF is constructed initially and then a quadratic RSF is formed using the axial experimental points selected from the reduced region where the design point is likely to exist. The RSF is updated successively by adding one more experimental point to the previously sampled experimental points. In order to demonstrate the effectiveness of the proposed method, mathematical problems and ten-bar truss are considered as numerical examples. As a result, the proposed method shows better accuracy and computational efficiency than the common RSM.

Shape Optimization of the Magnet for Superconducting Motor by Using RSM (반응표면법을 이용한 초전도 전동기의 마그넷 형상 최적화)

  • 이지영;김성일;김영균;홍정표;권영길
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.1
    • /
    • pp.18-21
    • /
    • 2004
  • This paper presents the optimization for shape design of a field coil used High Temperature Superconducting Motor (HTSM). In materials of HTSM, critical current Ic is more sensitive to magnetic fields directed along the axis or the unit cell ($B_{\bot}$). Thus, in the shape design of the HTS magnet. the maximum $B_{\bot}$ should be reduced to limit Ic. In order to reduce the maximum $B_{\bot}$, the shape optimization of the magnet, which is used for the field coil of HTSM, is necessary. It can be accomplished by using Response Surface Methodology (RSM). Finally, the result of RSM is verified by comparison with these experimental results.

Optimum Rotor Shape Design of Flux Switching Motor using RSM and Performance Improvement by New Type Winding Method (RSM을 이용한 FSM의 로터 형상 설계와 특성 개선을 위한 새로운 권선 기법)

  • Jun, Myung-Jin;Jang, Soon-Myung;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1059-1060
    • /
    • 2011
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Flux Switching Motor (FSM) using RSM & FEM. The focus of this paper is to find a design solution through the comparison of torque density and torque ripple according to rotor shape variations. And then, a central composite design(CCD) mixed resolution is introduced, and analysis of variance (ANOVA) is conducted to determine the significance of the fitted regression model.

  • PDF

Rotor & Stator Design on Torque Ripple Reduction for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology (반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 회전자 및 고정자 설계)

  • Choi, Yun-Chul;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2145-2149
    • /
    • 2007
  • This paper deals with optimum design criteria to minimize the torque ripple of a concentrated winding Synchronous Reluctance Motor (SynRM) using Response Surface Methodology (RSM). The feasibility of using RSM with the finite element method (FEM) in practical engineering problem is investigated with computational examples and comparison between the fitted response and the results obtained from an analytical solution according to the design variables of stator and rotor in concentrated winding SynRM (6slot).

Application of Response Surface Methodology for Optimization of Lactic Acid Production Using Date Juice

  • Chauhan Kishor;Trivedi Ujjval;Patel K.C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1410-1415
    • /
    • 2006
  • Media components, including date juice, sodium acetate, peptone, and $K_{2}HPO_4$, which were screened by Plackett-Burman fractional factorial design, were optimized for lactic acid production from date juice using the response surface method (RSM). Sodium acetate, peptone (p<0.0001), and $K_{2}HPO_4$ (p=0.0029) were highly significant in influencing the lactic acid production. Close correlationship between predicted and experimental values was observed. When the optimum values of the parameters obtained through RSM (25.0 g/l date sugar, 15.0 g/l sodium acetate, 19.1 g/l peptone, and 4.7 g/l $K_{2}HPO_4$) were applied, lactic acid production (22.7 g/l) increased by 50.33%, compared with unoptimized media (15.1 g/l). The subsequent validation experiments confirmed the validity of the statistical model.