• Title/Summary/Keyword: rover

Search Result 113, Processing Time 0.033 seconds

Performance of Internet DGPS Using Active X Control (Active X 컨트롤을 이용한 인터넷 DGPS 구현)

  • 강준묵;이용욱;이은수;조성호
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.37-44
    • /
    • 2003
  • The aim of this research was performance of Web-based real time DGPS using MS visual basic 6.0 Active X control. This system supported the navigation of rover by transmitting the DGPS correction information of base station via internet and monitored the moving of rover by displaying the corrected results received from rover as well as permitting Web users monitoring for rover. The Web-based DGPS server and the client system using MS visual basic 6.0 Active X control for DGPS displayed on Web-browser with the pre analysis was constructed and the system loading test via Web-browser was performed after debugging this system through the static GPS test and publishing it on Web. Also, the wireless internet DGPS test on Web by changing the distance between a base station and a rover was carried out. As the result of the test, the real time DGPS could be performed by transmitting the correction message which calculated from the server system to the client system continually. The rover could be managed by displaying the location information which received from the client system. Other users also could monitor the rover by connecting with this system via internet in real time.

  • PDF

Design of Mobility System for Ground Model of Planetary Exploration Rover

  • Kim, Younkyu;Eom, Wesub;Lee, Joo-Hee;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.413-422
    • /
    • 2012
  • In recent years, a number of missions have been planned and conducted worldwide on the planets such as Mars, which involves the unmanned robotic exploration with the use of rover. The rover is an important system for unmanned planetary exploration, performing the locomotion and sample collection and analysis at the exploration target of the planetary surface designated by the operator. This study investigates the development of mobility system for the rover ground model necessary to the planetary surface exploration for the benefit of future planetary exploration mission in Korea. First, the requirements for the rover mobility system are summarized and a new mechanism is proposed for a stable performance on rough terrain which consists of the passive suspension system with 8 wheeled double 4-bar linkage (DFBL), followed by the performance evaluation for the mechanism of the mobility system based on the shape design and simulation. The proposed mobility system DFBL was compared with the Rocker-Bogie suspension system of US space agency National Aeronautics and Space Administration and 8 wheeled mobility system CRAB8 developed in Switzerland, using the simulation to demonstrate the superiority with respect to the stability of locomotion. On the basis of the simulation results, a general system configuration was proposed and designed for the rover manufacture.

Localization Algorithm for Lunar Rover using IMU Sensor and Vision System (IMU 센서와 비전 시스템을 활용한 달 탐사 로버의 위치추정 알고리즘)

  • Kang, Hosun;An, Jongwoo;Lim, Hyunsoo;Hwang, Seulwoo;Cheon, Yuyeong;Kim, Eunhan;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.65-73
    • /
    • 2019
  • In this paper, we propose an algorithm that estimates the location of lunar rover using IMU and vision system instead of the dead-reckoning method using IMU and encoder, which is difficult to estimate the exact distance due to the accumulated error and slip. First, in the lunar environment, magnetic fields are not uniform, unlike the Earth, so only acceleration and gyro sensor data were used for the localization. These data were applied to extended kalman filter to estimate Roll, Pitch, Yaw Euler angles of the exploration rover. Also, the lunar module has special color which can not be seen in the lunar environment. Therefore, the lunar module were correctly recognized by applying the HSV color filter to the stereo image taken by lunar rover. Then, the distance between the exploration rover and the lunar module was estimated through SIFT feature point matching algorithm and geometry. Finally, the estimated Euler angles and distances were used to estimate the current position of the rover from the lunar module. The performance of the proposed algorithm was been compared to the conventional algorithm to show the superiority of the proposed algorithm.

Study on a Suspension of a Planetary Exploration Rover to Improve Driving Performance During Overcoming Obstacles

  • Eom, We-Sub;Kim, Youn-Kyu;Lee, Joo-Hee;Choi, Gi-Hyuk;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.381-387
    • /
    • 2012
  • The planetary exploration rover executes various missions after moving to the target point in an unknown environment in the shortest distance. Such missions include the researches for geological and climatic conditions as well as the existence of water or living creatures. If there is any obstacle on the way, it is detected by such sensors as ultrasonic sensor, infrared light sensor, stereo vision, and laser ranger finder. After the obtained data is transferred to the main controller of the rover, decisions can be made to either overcome or avoid the obstacle on the way based on the operating algorithm of the rover. All the planetary exploration rovers which have been developed until now receive the information of the height or width of the obstacle from such sensors before analyzing it in order to find out whether it is possible to overcome the obstacle or not. If it is decided to be better to overcome the obstacle in terms of the operating safety and the electric consumption of the rover, it is generally made to overcome it. Therefore, for the purpose of carrying out the planetary exploration task, it is necessary to design the proper suspension system of the rover which enables it to safely overcome any obstacle on the way on the surface in any unknown environment. This study focuses on the design of the new double 4-bar linkage type of suspension system applied to the Korea Aerospace Research Institute rover (a tentatively name) that is currently in the process of development by our institute in order to develop the planetary exploration rover which absolutely requires the capacity of overcoming any obstacle. Throughout this study, the negative moment which harms the capacity of the rover for overcoming an obstacle was induced through the dynamical modeling process for the rocker-bogie applied to the Mars exploration rover of the US and the improved version of rocker-bogie as well as the suggested double 4-bar linkage type of suspension system. Also, based on the height of the obstacle, a simulation was carried out for the negative moment of the suspension system before the excellence of the suspension system suggested through the comparison of responding characteristics was proved.

Research on Development of Construction Spatial Information Technology, using Rover's Camera System (로버 카메라 시스템을 이용한 건설공간정보화 기술의 개발 방안 연구)

  • Hong, Sungchul;Chung, Taeil;Park, Jaemin;Shin, Hyu-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.630-637
    • /
    • 2019
  • The scientific, economical and industrial values of the Moon have been increased, as massive ice-water and rare resource were founded from the lunar exploration missions. Korea and other major space agencies in the world are competitively developing the ISRU (In Situ Resource Utilization) technology to secure future lunar resource as well as to construct the lunar base. To prepare for the lunar construction, it is essential to develop the rover based construction spatial information technology to provide a decision-making aided information during the lunar construction process. Thus, this research presented the construction spatial information technology based upon rover's camera system. Specifically, the conceptual design of rover based camera system was designed for acquisition of a rover's navigation image, and lunar terrain and construction images around the rover. The reference architecture of the rover operation system was designed for computation of the lunar construction spatial information. Also, rover's localization and terrain reconstruction methods were introduced considering the characteristics of lunar surface environments. It is necessary to test and validate the conceptual design of the construction spatial information technology. Thus, in the future study, the developed rover and rover operation system will be applied to the lunar terrestrial analogue site for further improvements.

Experimental Study of Lunar Rover Wheel's Motion Performance on Korean Lunar Soil Simulant (한국형 인공월면토를 이용한 달탐사 로버 휠 성능평가 실험 연구)

  • Wang, Cheng-Can;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.97-108
    • /
    • 2016
  • Lunar rover plays an important role in lunar exploration. Especially, performance of rover wheel related to interaction with lunar soil is of great importance when it comes to optimization of rover's configuration. In this study, in order to investigate the motion performance of lunar rover's wheel on Korean Lunar Soil Simulant (KLS-1), a single wheel testbed was developed and used to carry out a series of experiments with two kinds of wheel with grousers and without grousers which were used to perform the experiments. Wheel traction performance was evaluated by using traction parameters such as drawbar pull, torque and sinkage correlated with slip ratio. The results showed that the single wheel testbed was suitable for evaluation of the performance of wheel and rover wheel with grousers which was likely to have higher traction performance than that without grousers in Korean Lunar soil simulant. The experimental results could be utilized in verification of the optimum wheel design and effectiveness of wheel traction for Korean lunar rover.

Conceptual Design of Rover's Mobility System for Ground-Based Model (지상시험모델 로버 주행장치 개념 설계)

  • Kim, Youn-Kyu;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup;Jeon, Sang-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.677-692
    • /
    • 2009
  • In recent years, lots of studies on the planetary rover systems have been performed around space advanced agencies such as NASA, ESA, JAXA, etc. Among the various technologies for the planetary rover system, the mobility system, navigation algorithm, and scientific payload have been focused particularly. In this paper, the conceptual design for a ground-based model of planetary rover's mobility system to evaluate mobility and moving stability on ground is presented. The status of overseas research and development of the planetary rover systems is also addressed in terms of technical issues. And then, the requirements of the planetary rover's mobility system are derived by means of considering mobility and stability. The designed rover's mobility system has an active suspension with 6 legs that controls 6 joints on the each leg in order to achieve high stability and mobility. This kind of mobility system has already applied to the ATHELE of NASA for various purposes such as transportation and habitation for human lunar exploration activities in the near future (i.e., Constellation program). However, the proposed system has been designed by focusing on the small-sized unmanned explorations, which may be applied for the future Korea Lunar exploration missions. Therefore, we expect that this study will be an useful reference and experience in order to develop the planetary exploration rover system in Korea.

Development of Simulation Method to Design Rover's Camera System for Extreme Region Exploration (극한지 탐사 로버의 카메라 시스템 설계를 위한 시뮬레이션 기법 개발)

  • Kim, Changjae;Park, Jaemin;Choi, Kanghyuk;Shin, Hyu-Soung;Hong, Sungchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.271-279
    • /
    • 2019
  • In extreme environment regions, unmanned rovers equipped with various sensors and devices are being developed for long-term exploration on behalf of humans. On the other hand, due to the harsh weather conditions and rough terrain, the rover camera has limited visible distance and field of view. Therefore, the rover cameras should be located for safe navigation and efficient terrain mapping. In this regard, to minimize the cost and time to manufacture the camera system on a rover, the simulation method using the rover design is presented to optimize the camera locations on the rover efficiently. In the simulation, a simulated terrain was taken from cameras with different locations and angles. The visible distance and overlapped extent of camera images, and terrain data accuracy calculated from the simulation were compared to determine the optimal locations of the rover's cameras. The simulated results will be used to manufacture a rover and camera system. In addition, self and system calibrations will be conducted to calculate the accurate position of the camera system on the rover.

Planetary Long-Range Deep 2D Global Localization Using Generative Adversarial Network (생성적 적대 신경망을 이용한 행성의 장거리 2차원 깊이 광역 위치 추정 방법)

  • Ahmed, M.Naguib;Nguyen, Tuan Anh;Islam, Naeem Ul;Kim, Jaewoong;Lee, Sukhan
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.26-30
    • /
    • 2018
  • Planetary global localization is necessary for long-range rover missions in which communication with command center operator is throttled due to the long distance. There has been number of researches that address this problem by exploiting and matching rover surroundings with global digital elevation maps (DEM). Using conventional methods for matching, however, is challenging due to artifacts in both DEM rendered images, and/or rover 2D images caused by DEM low resolution, rover image illumination variations and small terrain features. In this work, we use train CNN discriminator to match rover 2D image with DEM rendered images using conditional Generative Adversarial Network architecture (cGAN). We then use this discriminator to search an uncertainty bound given by visual odometry (VO) error bound to estimate rover optimal location and orientation. We demonstrate our network capability to learn to translate rover image into DEM simulated image and match them using Devon Island dataset. The experimental results show that our proposed approach achieves ~74% mean average precision.

Development of a New Pressure-Sinkage Model for Rover Wheel-Lunar Soil Interaction based on Dimensional Analysis and Bevameter Tests

  • Lim, Yujin;Le, Viet Dinh;Bahati, Pierre Anthyme
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.237-250
    • /
    • 2021
  • A rover is a planetary surface exploration device designed to move across the ground on a planet or a planetary-like body. Exploration rovers are increasingly becoming a vital part of the search for scientific evidence and discoveries on a planetary satellite of the Sun, such as the Moon or Mars. Reliable behavior and predictable locomotion of a rover is important. Understanding soil behavior and its interaction with rover wheels-the terramechanics-is of great importance in rover exploration performance. Up to now, many researchers have adopted Bekker's semiempirical model to predict rover wheelsoil interaction, which is based on the assumption that soil is deformable when a pressure is applied to it. Despite this basic assumption of the model, the pressure-sinkage relation is not fully understood, and it continues to present challenges for rover designers. This article presents a new pressure-sinkage model based on dimensional analysis (DA) and results of bevameter tests. DA was applied to the test results in order to propose a new pressure-sinkage model by reducing physical quantitative parameters. As part of the work, a new bevameter was designed and built so that it could be successfully used to obtain a proper pressure-sinkage relation of Korean Lunar Soil Simulant (KLS-1). The new pressure-sinkage model was constructed by using three different sizes of flat plate diameters of the bevameter. The newly proposed model was compared successfully with other models for validation purposes.