• 제목/요약/키워드: routing scalability

검색결과 145건 처리시간 0.03초

Enhanced OLSR Routing Protocol Using Link-Break Prediction Mechanism for WSN

  • Jaggi, Sukhleen;Wasson, Er. Vikas
    • Industrial Engineering and Management Systems
    • /
    • 제15권3호
    • /
    • pp.259-267
    • /
    • 2016
  • In Wireless Sensor Network, various routing protocols were employed by our Research and Development community to improve the energy efficiency of a network as well as to control the traffic by considering the terms, i.e. Packet delivery rate, the average end-to-end delay, network routing load, average throughput, and total energy consumption. While maintaining network connectivity for a long-term duration, it's necessary that routing protocol must perform in an efficient way. As we discussed Optimized Link State Routing protocol between all of them, we find out that this protocol performs well in the large and dense networks, but with the decrease in network size then scalability of the network decreases. Whenever a link breakage is encountered, OLSR is not able to periodically update its routing table which may create a redundancy problem. To resolve this issue in the OLSR problem of redundancy and predict link breakage, an enhanced protocol, i.e. S-OLSR (More Scalable OLSR) protocol has been proposed. At the end, a comparison among different existing protocols, i.e. DSR, AODV, OLSR with the proposed protocol, i.e. S-OLSR is drawn by using the NS-2 simulator.

Position-Based Multicast Routing in Mobile Ad hoc Networks: An Analytical Study

  • Qabajeh, Mohammad M.;Adballa, Aisha H.;Khalifa, Othman O.;Qabajeh, Liana K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권6호
    • /
    • pp.1586-1605
    • /
    • 2012
  • With the prevalence of multimedia applications and the potential commercial usage of Mobile Ad hoc Networks (MANETs) in group communications, Quality of Service (QoS) support became a key requirement. Recently, some researchers studied QoS multicast issues in MANETs. Most of the existing QoS multicast routing protocols are designed with flat topology and small networks in mind. In this paper, we investigate the scalability problem of these routing protocols. In particular, a Position-Based QoS Multicast Routing Protocol (PBQMRP) has been developed. PBQMRP builds a source multicast tree guided by the geographic information of the mobile nodes, which helps in achieving more efficient multicast delivery. This protocol depends on the location information of the multicast members which is obtained using a location service algorithm. A virtual backbone structure has been proposed to perform this location service with minimum overhead and this structure is utilized to provide efficient packet transmissions in a dynamic mobile Ad hoc network environment. The performance of PBQMRP is evaluated by performing both quantitative analysis and extensive simulations. The results show that the used virtual clustering is very useful in improving scalability and outperforms other clustering schemes. Compared to On-Demand Multicast Routing Protocol (ODMRP), PBQMRP achieves competing packet delivery ratio and significantly lower control overhead.

A Secure, Hierarchical and Clustered Multipath Routing Protocol for Homogenous Wireless Sensor Networks: Based on the Numerical Taxonomy Technique

  • Hossein Jadidoleslamy
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.121-136
    • /
    • 2023
  • Wireless Sensor Networks (WSNs) have many potential applications and unique challenges. Some problems of WSNs are: severe resources' constraints, low reliability and fault tolerant, low throughput, low scalability, low Quality of Service (QoS) and insecure operational environments. One significant solution against mentioned problems is hierarchical and clustering-based multipath routing. But, existent algorithms have many weaknesses such as: high overhead, security vulnerabilities, address-centric, low-scalability, permanent usage of optimal paths and severe resources' consumption. As a result, this paper is proposed an energy-aware, congestion-aware, location-based, data-centric, scalable, hierarchical and clustering-based multipath routing algorithm based on Numerical Taxonomy technique for homogenous WSNs. Finally, performance of the proposed algorithm has been compared with performance of LEACH routing algorithm; results of simulations and statistical-mathematical analysis are showing the proposed algorithm has been improved in terms of parameters like balanced resources' consumption such as energy and bandwidth, throughput, reliability and fault tolerant, accuracy, QoS such as average rate of packet delivery and WSNs' lifetime.

Scaling Inter-domain Routing System via Path Exploration Aggregation

  • Wang, Xiaoqiang;Zhu, Peidong;Lu, Xicheng;Chen, Kan;Cao, Huayang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권3호
    • /
    • pp.490-508
    • /
    • 2013
  • One of the most important scalability issues facing the current Internet is the rapidly increasing rate of BGP updates (BGP churn), to which route flap and path exploration are the two major contributors. Current countermeasures would either cause severe reachability loss or delay BGP convergence, and are becoming less attractive for the rising concern about routing convergence as the prevalence of Internet-based real time applications. Based on the observation that highly active prefixes usually repeatedly explore very few as-paths during path exploration, we propose a router-level mechanism, Path Exploration Aggregation (PEA), to scale BGP without either causing prefix unreachable or slowing routing convergence. PEA performs aggregation on the transient paths explored by a highly active prefix, and propagates the aggregated path instead to reduce the updates caused by as-path changes. Moreover, in order to avoid the use of unstable routes, PEA purposely prolongs the aggregated path via as-path prepending to make it less preferred in the perspective of downstream routers. With the BGP traces obtained from RouteViews and RIPE-RIS projects, PEA can reduce BGP updates by up to 63.1%, shorten path exploration duration by up to 53.3%, and accelerate the convergence 7.39 seconds on average per routing event.

TDMA 기반 저전력 애드혹 네트워크를 위한 메쉬 라우팅 알고리즘 (Mesh Routing Algorithm for TDMA Based Low-power and Ad-hoc Networks)

  • 황소영
    • 한국정보통신학회논문지
    • /
    • 제18권8호
    • /
    • pp.1955-1960
    • /
    • 2014
  • 저전력 애드혹 네트워크 환경에서 명령 및 데이터의 전달을 위해 라우팅 기법은 필수적이며 최근에는 신뢰성과 확장성을 고려한 네트워킹 기법에 대한 연구가 많이 이루어지고 있다. 저전력 네트워킹 기술에서 네트워크 계층의 성능은 하위 데이터 링크 계층의 동작과 밀접한 연관이 있으며 신뢰성과 확장성을 지원하기 위해 TDMA 기반의 메쉬 라우팅 기법이 고려되고 있다. 본 논문에서는 TDMA 기반 저전력 애드혹 네트워크에서 TDMA MAC의 특성과 토폴로지 기반으로 할당된 주소를 활용한 메쉬 라우팅 알고리즘을 제안한다. 또한, TDMA MAC이 동작하는 센서 네트워크 플랫폼에서 제안한 기법을 구현한 결과를 제시한다.

자율구성 계층구조 애드혹 네트워크를 위한 상호 연동방식의 토폴로지 탐색 및 라우팅 프로토콜 (A Joint Topology Discovery and Routing Protocol for Self-Organizing Hierarchical Ad Hoc Networks)

  • 양서민;이혁준
    • 정보처리학회논문지C
    • /
    • 제11C권7호
    • /
    • pp.905-916
    • /
    • 2004
  • 자율구성 계층구조 에드혹 네트워크(Self-organizing hierarchical ad hoc network, SOHAN)는 편평구조 에드혹 네트워크의 확장성을 향상시키기 위해 설계된 새로운 형태, 즉, 액세스 포인트, 전달 노드, 이동 노드의 3 계층의 애드혹 노드로 구성된 네트워크 구조이다. 본 논문에서는 SOHAN의 자율구성을 위한 토폴로지 탐색과 라우팅 프로토콜을 소개한다. 또한 높은 전송 용량을 갖는 최적의 클러스터 기반 계층구조 토폴로지를 형성하기 위한 링크 품질 및 MAC 지연 시간 기반의 크로스레이어 설계방식의 경로 척도를 제안한다. 토폴로지 탐색 프로토콜은 2.5 계층에서 MAC 주소를 기반으로 동작하는 라우팅 프로토콜을 위한 기본적인 정보를 제공한다. 이 라우팅 프로토콜은 AODV 프로토콜을 기반으로 하며, 계층구조의 장점을 활용하기 위해 토폴로지 탐색 프로토콜과 상호 연동하도록 설계된다. 시뮬레이션을 통해 전송용량, 종단간 지연시간, 패킷 전달률, 제어 오버헤드 관점에서 SOHAN의 우수한 성능과 확장성을 보인다.

빌딩 자동화를 위한 무선 센서 네트워크 라우팅 프로토콜 (Routing Algorithm of Wireless Sensor Network for Building Automation System)

  • 노덕래;홍승호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.45-47
    • /
    • 2009
  • Wireless Sensor Network(WSN) has been very popular in unattended surveillance systems recently. For Applying WSN into Building Automation system(BAS), a novel hierarchial network structure and static routing algorithm which eliminates the scalability limitation of Zigbee are proposed in this paper. The static routing algorithm relying on the hierarchial network address reduces the computational complexity to a great extent and has a real-time performance which satisfies urgent applications well.

  • PDF

Design of an efficient routing algorithm on the WK-recursive network

  • Chung, Il-Yong
    • 스마트미디어저널
    • /
    • 제11권9호
    • /
    • pp.39-46
    • /
    • 2022
  • The WK-recursive network proposed by Vecchia and Sanges[1] is widely used in the design and implementation of local area networks and parallel processing architectures. It provides a high degree of regularity and scalability, which conform well to a design and realization of distributed systems involving a large number of computing elements. In this paper, the routing of a message is investigated on the WK-recursive network, which is key to the performance of this network. We present an efficient shortest path algorithm on the WK-recursive network, which is simpler than Chen and Duh[2] in terms of design complexity.

Lightweight Multicast Routing Based on Stable Core for MANETs

  • Al-Hemyari, Abdulmalek;Ismail, Mahamod;Hassan, Rosilah;Saeed, Sabri
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권12호
    • /
    • pp.4411-4431
    • /
    • 2014
  • Mobile ad hoc networks (MANETs) have recently gained increased interest due to the widespread use of smart mobile devices. Group communication applications, serving for better cooperation between subsets of business members, become more significant in the context of MANETs. Multicast routing mechanisms are very useful communication techniques for such group-oriented applications. This paper deals with multicast routing problems in terms of stability and scalability, using the concept of stable core. We propose LMRSC (Lightweight Multicast Routing Based on Stable Core), a lightweight multicast routing technique for MANETs, in order to avoid periodic flooding of the source messages throughout the network, and to increase the duration of multicast routes. LMRSC establishes and maintains mesh architecture for each multicast group member by dividing the network into several zones, where each zone elects the most stable node as its core. Node residual energy and node velocity are used to calculate the node stability factor. The proposed algorithm is simulated by using NS-2 simulation, and is compared with other multicast routing mechanisms: ODMRP and PUMA. Packet delivery ratio, multicast route lifetime, and control packet overhead are used as performance metrics. These metrics are measured by gradual increase of the node mobility, the number of sources, the group size and the number of groups. The simulation performance results indicate that the proposed algorithm outperforms other mechanisms in terms of routes stability and network density.

무선 메시 네트워크의 라우팅 성능 개선 연구 (A Study on Improvement of Routing Performance for Wireless Mesh Networks)

  • 김호철
    • 한국산학기술학회논문지
    • /
    • 제14권5호
    • /
    • pp.2422-2429
    • /
    • 2013
  • 현재 WMN은 다중 홉 라우팅을 통한 무선 네트워크 서비스 제공의 핵심방안으로 연구되고 있다. WMN은 MANET을 위하여 제안된 프로토콜들을 적용하여 빠르게 구축할 수 있다는 장점이 있다. 하지만 다중 네트워크 및 다중 채널의 지원, 망의 구조 등에서 MANET과 차이가 있으며 특히 네트워크 계층의 라우팅 프로토콜의 경우 MANET의 라우팅 프로토콜을 그대로 적용할 경우 성능저하의 한 원인이 될 수 있다. 다양한 MANET 라우팅 프로토콜 중 이동노드의 성능 및 네트워크 자원의 제약을 고려해 볼 때 AODV가 가장 적합하다고 할 수 있으나 네트워크의 확장 시에 경로결정 지연시간이 길어지는 단점이 있다. 본 논문에서는 AODV의 이러한 단점을 개선하기 위하여 메시 라우터와 메시 클라이언트를 라우팅 계층으로 구분 하고 메시 클라이언트의 경로설정 메시지의 방송을 지역화하여 WMN의 구조에 적합하도록 변경된 방안을 제시한다.