• Title/Summary/Keyword: roughness coefficients

Search Result 194, Processing Time 0.029 seconds

A Numerical Analysis on the Shear and Hydraulic behavior of Single Rock Joint with Roughness (거칠기를 고려한 단일 절리의 전단, 수리적 거동에 대한 수치해석)

  • 이희석;이연규
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.117-128
    • /
    • 2000
  • The development of proper joint model, which can describe real phenomena exactly and still can be used easily, is one of the most important element for the analysis of the mechanical and hydraulic behavior of discontinuous rock mass. In this study, an elasto-plastic constitutive model of joint behavior considering asperity degradation was extended with the concept of first and second order asperities. The proposed model was implemented to numerical code with discrete finite joint element. The parametric study with the various asperity angles and degradation coefficients showed that the model can reproduce the shear behavior of typical rough joints well. Results of laboratory monotonic and cyclic shear tests were compared with those of numerical tests to validate the model. The hydraulic model considering the relations between gouge production and aperture was introduced to the mechanical model. In an attempt to examine the performance of the model, comparative numerical test was conducted. Permeability between joint surfaces increased rapidly at the first stage, but became nearly constant with increasing shear displacement due to gouge production and uniform variation of aperture distribution.

  • PDF

A Numerical Analysis on the Shear and Hydraulic behavior of Single Rock Joint with Roughness (거칠기를 고려한 단일 절리의 전단, 수리적 거동에 대한 수치해석)

  • 이희석;이연규
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.366-377
    • /
    • 2000
  • The development of proper joint model, which can describe real phenomena exactly and still can be used easily, is one of the most important element for the analysis of the mechanical and hydraulic behavior of discontinuous rock mass. In this study, an elasto-plastic constitutive model of joint behavior considering asperity degradation was extended with the concept of first and second order asperities. The proposed model was implemented to numerical code with discrete finite joint element. The parametric study with the various asperity angles and degradation coefficients showed that the model can reproduce the shear behavior of typical rough joints well. Results of laboratory monotonic and cyclic shear tests were compared with those of numerical tests to validate the model. The hydraulic model considering the relations between gouge production and aperture was introduced to the mechanical mode1. In an attempt to examine the performance of the model, comparative numerical test was conducted. Permeability between joint surfaces increased rapidly at the first stage, but became nearly constant with increasing shear displacement due to gouge production and uniform variation of aperture distribution.

  • PDF

An Agent-Based Modeling Approach for Estimating Inundation Areas over Time (행위자 기반 모델링을 활용한 시간에 따른 침수 지역 예상)

  • Kim, Byungil;Shin, Sha Chul;Jung, Jaehoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.4
    • /
    • pp.20-27
    • /
    • 2016
  • Emergency and evacuation planning is critical to reduce potential loss of life from flooding. In order to develop evacuation plans, emergency managers and decision makers require estimates of probable inundation areas and times of inundation. In this paper, we present an agent-based modeling approach that incorporates in a hydrodynamic model to estimate both of these properties. A case study is conducted modeling the failure of a dam located in Andong, South Korea. We estimate flood travel times for Manning's roughness coefficients and discharge using a coupling of the continuity equation and Manning's equation. Using the output from the hydrodynamic model and the flood travel times, the agent-based model produces flood inundation maps at each time interval. The model estimates that for two-thirds of the Andong region the time of inundation is estimated to be slightly less than three minutes. The results of this study can be used to in the development of emergency and evacuation planning for the region.

Development and validation of a non-linear k-ε model for flow over a full-scale building

  • Wright, N.G.;Easom, G.J.;Hoxey, R.J.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.177-196
    • /
    • 2001
  • At present the most popular turbulence models used for engineering solutions to flow problems are the $k-{\varepsilon}$ and Reynolds stress models. The shortcoming of these models based on the isotropic eddy viscosity concept and Reynolds averaging in flow fields of the type found in the field of Wind Engineering are well documented. In view of these shortcomings this paper presents the implementation of a non-linear model and its evaluation for flow around a building. Tests were undertaken using the classical bluff body shape, a surface mounted cube, with orientations both normal and skewed at $45^{\circ}$ to the incident wind. Full-scale investigations have been undertaken at the Silsoe Research Institute with a 6 m surface mounted cube and a fetch of roughness height equal to 0.01 m. All tests were originally undertaken for a number of turbulence models including the standard, RNG and MMK $k-{\varepsilon}$ models and the differential stress model. The sensitivity of the CFD results to a number of solver parameters was tested. The accuracy of the turbulence model used was deduced by comparison to the full-scale predicted roof and wake recirculation zone lengths. Mean values of the predicted pressure coefficients were used to further validate the turbulence models. Preliminary comparisons have also been made with available published experimental and large eddy simulation data. Initial investigations suggested that a suitable turbulence model should be able to model the anisotropy of turbulent flow such as the Reynolds stress model whilst maintaining the ease of use and computational stability of the two equations models. Therefore development work concentrated on non-linear quadratic and cubic expansions of the Boussinesq eddy viscosity assumption. Comparisons of these with models based on an isotropic assumption are presented along with comparisons with measured data.

Heat Transfer between Substrate and Substrate-heater in Low Vacuum (저진공 내 시료가열판과 시료의 열전달)

  • Park, Hyon-Jae;Oh, Soo-Ghee;Shin, Yong-Hyeon;Chung, Kwang-Hwa
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.302-310
    • /
    • 2008
  • Heat transfer between substrate and substrate-heater in low vacuum was investigated. The convection related with gas flow and pressure, the heat conduction considering surface roughness and contact pressure, and the heat loss by radiation depending on the surface emissivity were considered. The coefficient of heat conduction $h_c$ in the Fourier's law were determined experimentally from the temperature difference between the substrate and the substrate-heater in the range of substrate-heater temperature $100\;-\;500^{\circ}C$, in the pressures of 300 mTorr - 1 Torr. The temperature difference was then calculated in the reverse way for the purpose of verification, using the heat flow and the experimentally determined coefficients. The verified temperature differences were thus obtained within 0.33 % error.

Hydraulic Flood Routing using Linear Reservoir Model (선형저수지모형을 적용한 수리학적 홍수추적)

  • Jeon, Min-Woo;Cho, Young-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.787-796
    • /
    • 2002
  • Hydraulic flood routing was performed for unsteady flow in a natural river using Preissmann scheme. A Log-Pearson Type-Ⅲ hydrograph is chosen arbitrarily as the upstream boundary condition and lateral inflow hydrographs for sensitivity analysis. For the application with an actual river system, upstream and lateral inflow hydrographs were estimated by the linear reservoir model and the Manning's equation was used as the downstream boundary condition. The unsteady flow model using the linear reservoir model as the inflow hydrographs was applied to Bochung stream basin and gives good results, and is approved to be used for the runoff prediction. As results of the sensitivity analysis, the proposed model may help to estimate the roughness coefficients when using the unsteady flow model with lateral inflow combined with the linear reservoir model.

Estimation of Roughness Coefficients in Domestic Rivers Using Observed Field Data (현장 실측 자료를 이용한 국내하천의 조도계수 산정)

  • Kim, Yong-Jeon;Kim, Ji-Sung;Lee, Chan-Joo;Kim, Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.325-325
    • /
    • 2011
  • 자연과 함께하는 하천복원 기술개발(Ecoriver21) 연구단에서 진행 중인 홍수터 수목관리 기술 개발 과제에서는 국내하천 흐름저항 산정기법을 개발하기 위해 2006년부터 2009년까지 총 27개 시험하천의 실측자료를 이용한 조도계수를 산정하였다. 2010년에는 18개 시험하천을 추가로 운영하여 최종적으로 총 45개 하천의 조도계수를 산정하고자 한다. 조도계수 계산에 필요한 자료는 모두 현장에서 직접 측정하였으며 이를 위해 넓은 범위의 수위자료를 획득할 수 있는 홍수기 이전에 수위계를 설치하였고, 유량 측정, 하천 단면 측량, 하상재료 입경분석 등을 통하여 유량 변화에 따른 조도계수 분석, 하상재료 크기별 조도계수 변화 분석, 조도계수 경년변화 분석 등의 연구를 진행하였다. 분석 결과 대부분의 하천은 유량이 증가함에 따라 조도계수가 감소하는 경향을 보였고 특정한 유량 범위에서 수렴하였다. 유량에 따른 조도계수 변화 폭은 하상재료의 입경 크기가 클수록 심하였다. 산지 거석하천인 내린천 왕성동 지점의 경우 0이 287.8 mm로 조사 지점 중 하상재료의 크기와 유량에 따른 조도계수 변화 폭, 수렴되는 조도계수 값이 가장 컸다. 하상재료 입경 크기 $D_{50}$을 기준으로 2 mm이하인 모래하천의 경우에는 유량이 증가함에 따라 조도계수가 감소하다가 고유량에서 다시 증가하는 경향을 보였다. 조도계수 경년변화를 분석한 평창강 방림 지점과 만경강 고산 지점의 결과는 비교적 큰 차이를 나타내지 않았고, 한강 본류의 배수영향을 받는 옥동천 옥동, 법천천 법천 지점의 경우 배수 상황 발생 시 다른 지점과 달리 상당히 복잡한 양상을 나타내었다. 본 연구에서는 지금까지 진행된 국내하천의 조도계수 분석 자료를 종합하여 조도계수 자료집을 발간할 계획이며, 조도계수 자료집에는 각 지점의 수위 및 유량 실측자료, 하상재료 입경 크기, 지점 특성, 사진 자료 등이 포함될 예정이다.

  • PDF

Improvement of Surface Properties of CP-Titanium by Thermo-Chemical Treatment (TCT) Process (열확산처리 공정에 의한 순수 타이타늄의 표면특성 향상 연구)

  • Jeong, Hyeon-Gyeong;Lee, Dong-Geun;Yaskiv, O.;Lee, Yong-Tai;Hur, Bo-Young
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.692-698
    • /
    • 2011
  • The thermo-chemical treatment (TCT) process was applied to achieve surface hardening of CP titanium. The following three different surface modification conditions were tested so that the best surface hardening process could be selected:(a) PVD, (b) TCT+PVD, and (c) TCT+Aging+PVD. These specimens were tested and analyzed in terms of surface roughness, wear, friction coefficient, and the gradient of hardening from the surface of the matrix. The three test conditions were all beneficial to improve the surface hardness of CP titanium. Moreover, the TCT treated specimens, that is, (b) and (c), showed significantly improved surface hardness and low friction coefficients through the thickness up to $100{\mu}m$. This is due to the functionally gradient hardened surface improvement by the diffused interstitial elements. The hardened surface also showed improvement in bonding between the PVD and TCT surface, and this leads to improvement in wear resistance. However, TCT after aging treatment did not show much improvement in surface properties compared to TCT only. For the best surface hardening on CP titanium, TCT+PVD has advantages in surface durability and economics.

SAR Clutter Image Generation Based on Measured Speckles and Textures (지표면 별 영상잡음과 영상질감을 이용한 SAR 클러터 영상 생성)

  • Kwon, Soon-Gu;Oh, Yi-Sok
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.375-381
    • /
    • 2009
  • In this paper, synthetic aperture radar (SAR) clutter images are simulated based on the extensive analyses for radar backscatter characteristics of various earth surfaces, and the simulated images are compared with measured SAR images. At first, the surface parameters including soil moisture content and surface roughness parameters and other parameters for vegetation canopies are measured for various surfaces. The backscattering coefficients for the surfaces are computed using theoretical and empirical models for surface scattering and the radiative transfer for vegetation-canopy scattering. Then, the digital elevation map (DEM) and land cover map (LCM) are used for the SAR image generation. The SAR impulse response (correlation function) is also employed to simulated reliable SAR images. Finally, the appropriate speckle and texture parameters for various earth surfaces are used for generating the SAR clutter images.

Change of Ice Resistance of Ice-Breaking Tanker According to Frictional Coefficient (빙마찰계수에 따른 쇄빙탱커의 빙저항 변화)

  • Cho, Seong-Rak;Lee, Sungsu;Lee, Yong-Chul;Yum, Jong-Gil;Jang, Jinho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.175-181
    • /
    • 2021
  • This study describes the model tests in ice according to the frictional coefficient of an ice-breaking ship and the change in ice resistance by the analysis method for each component of ice resistances. The target vessel is a 90K DWT ice-breaking tanker capable of operating in ARC7 ice conditions in the Arctic Ocean, and twin POD propellers are fitted. The hull was specially painted with four different frictional coefficients on the same ship model. The total ice resistance can be separated by ice breaking, ice buoyancy, ice clearing resistances through the tests in level ice, pre-sawn ice and creep test in pre-sawn ice under sea ice thickness of 1.2 m and 1.7 m. Ice resistance was analyzed by correcting the thickness and bending strength of model ice by the ITTC correction method. As the frictional coefficient between the hull and ice increases, ice buoyancy and clearing resistances increase significantly. When the surface of the hull is rough, it is considered that the broken ice pieces do not slip easily to the side, resulting in an increase in ice buoyancy resistance. Also, the frictional coefficient was found to have a great influence on the ice clearing resistance as the ice thickness became thicker.