• Title/Summary/Keyword: rotor types

Search Result 192, Processing Time 0.026 seconds

To Evaluate the Accuracy of DEMs Derived from the Various Spectral Bands of Color Aerial Photos (컬러항공사진의 밴드별 수치표고모형 정확도 평가)

  • Kim, Jin-Kwang;Hwang, Chul-Sue
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.1
    • /
    • pp.9-17
    • /
    • 2007
  • In this study, Digital Elevation Models (DEMs) were constructed from color images, grayscale images and each bands (Red, Green, Blue) of color image, and the accuracies of each DEMs were evaluated, And then, correlation coefficients between left and right images of each stereopairs were analyzed. The DEM can be constructed conventionally from the digital map and stereopair images using image matching. The image matching requires stereo satellite images or aerial photographs. In case of rotor aerial photographs, these are to be scanned in 3 bands (Red, Green, Blue). For this study, 5 types of images were acquired; color, grayscale, RED band, GREEN band, and BLUE band image. DEMs were constructed from 5 types of stereopair images and evaluated using elevation points of digital maps. In order to analyze the cause of various accuracies of each DEMs, the similarity between left and right images of each stereopairs were analyzed. Consequently, the accuracy of the DEM constructed from RED band images of color aerial photograph were proved best.

An Analysis of Fashion Color Preferences According to Koreans' Personal Color Types (한국인의 개인색채 유형에 따른 패션색채 기호의 분석)

  • Jo, Eun-Young;Yoo, Tai-Soon
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.10
    • /
    • pp.37-51
    • /
    • 2008
  • The purpose of this study is according to four Seasonal Color system, the researcher analyzed the Korean Personal color and investigated abstract color preferences and the fashion color preferences to support the Korean color preferences and the rotor recognition trend. The study was conducted according to the following procedures: 144 women from 20s to 50s were selected as participants of the survey and the interview. The fashion color preferences and the personal body color was analyzed by the questionnaire and the interview. The data were analyzed by SPSS 12.0 program. As a way of analysis, crosstabs analysis, correlation analysis, t-test, ANOVA and regression analysis were used. As a results, in the Personal color type of Korean women, it is distributed in the order of spring, summer, winter and autumn. In addition, Light image is highly distributed in the Personal color image. People preferred summer color group in the general color preference and the cosmetic color preference and they preferred winter color type in the clothes color and the suitable color for themselves. In the color recognition, as the color interest increases, the coincidence between suitable color and favorite color increased. The recognition of suitable color, the consideration of color in purchasing and the interest of outward appearances were highly showed.

Operation Analysis of Induction Motor under the Combination of Linear & Non-linear Loads (선형 및 비선형 부하 혼합 운전시 유도전동기의 동작 분석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Dong-Ju;Kim, Jun-Ho;Lee, Jong-Han;Jeong, Jong-Ho;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.65-67
    • /
    • 2006
  • This paper presents a scheme on the characteristics of induction motor under the combination of linear & non-linear loads at the three phase 4-wire power distribution system. Under the combination operation of single & three phase load, voltage unbalance will be generated and current unbalance will be more severe by the dropped voltage quality. All power electronic converters used in different types of electronic systems can increase harmonic disturbances by injecting harmonic currents directly into the feeder grid of three phase 4-wire. Harmonic current may cause torque to decrease. Motors may also overheat or become noisy and torque oscillation in the rotor can lead to mechanical resonance and vibration.

  • PDF

Rotor High-Speed Noise Prediction with a Combined CFD-Kirchhoff Method (CFD와 Kirchhoff 방법의 결합을 이용한 로터의 고속 충격소음 해석)

  • 이수갑;윤태석
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.607-616
    • /
    • 1996
  • A combined computational fluid dynamics(CFD)-Kirchhoff method is presented for predicting high-speed impulsive noise generated by a hovering blade. Two types of Kirchhoff integral formula are used; one for the classical linear Kirchhoff formulation and the other for the nonlinear Kirchhoff formulation. An Euler finite difference solver is solved first to obtain the flow field close to the blade, and then this flow field is used as an input to a Kirchhoff formulation to predict the acoustic far-field. These formulas are used at Mach numbers of 0.90 and 0.95 to investigate the effectiveness of the linear and nonlinear Kirchhoff formulas for delocalized flow. During these calculiations, the retarded time equation is also carefully examined, in particular, for the cases of the control surface located outside of the sonic cylinder, where multiple roots are obtained. Predicted results of acoustic far-field pressure with the linear Kirchhoff formulation agree well with experimental data when the control surface is at the certain location(R=1.46), but the correlation is getting worse before or after this specific location of the control surface due to the delocalized nonlinear aerodynamic flow field. Calculations based on the nonlinear Kirchhoff equation using a linear sonic cylinder as a control surface show a reasonable agreement with experimental data in negative amplitudes for both tip Mach numbers of 0.90 and 0.95, except some computational integration problems over a shock. This concliudes that a nonlinear formulation is necessary if the control surface is close to the blade and the flow is delocalized.

  • PDF

Experimental analyses of dynamical systems involving shape memory alloys

  • Enemark, Soren;Savi, Marcelo A.;Santos, Ilmar F.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1521-1542
    • /
    • 2015
  • The use of shape memory alloys (SMAs) in dynamical systems has an increasing importance in engineering especially due to their capacity to provide vibration reductions. In this regard, experimental tests are essential in order to show all potentialities of this kind of systems. In this work, SMA springs are incorporated in a dynamical system that consists of a one degree of freedom oscillator connected to a linear spring and a mass, which is also connected to the SMA spring. Two types of springs are investigated defining two distinct systems: a pseudoelastic and a shape memory system. The characterisation of the springs is evaluated by considering differential calorimetry scanning tests and also force-displacement tests at different temperatures. Free and forced vibration experiments are made in order to investigate the dynamical behaviour of the systems. For both systems, it is observed the capability of changing the equilibrium position due to phase transformations leading to hysteretic behaviour, or due to temperature changes which also induce phase transformations and therefore, change in stiffness. Both situations are investigated by promoting temperature changes and also pre-tension of the springs. This article shows several experimental tests that allow one to obtain a general comprehension of the dynamical behaviour of SMA systems. Results show the general thermo-mechanical behaviour of SMA dynamical systems and the obtained conclusions can be applied in distinct situations as in rotor-bearing systems.

Dispersion Properties of Epoxy-layered Silicate Nanocomposites Using Homogenizer (균질기를 이용한 에폭시-층상 실리케이트 나노콤포지트 분산 특성)

  • Lee, Sang-Keuk;Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.126-133
    • /
    • 2013
  • This paper presents a study on the dispersion effect of the X-Ray diffraction, glass transition and DMA properties of organic modifier clay/epoxy nanocomposites produced in a homogenizer. Several experiments were conducted including different types of dispersion condition with varying processing conditions such as homogenizer rotor speed and applied time of homogenizer. The effects of these variables on the dispersion properties of nanocomposites were then studied. In order to fully understand the experimental results, a X-ray diffraction, DSC and DMA were used to investigate the effect of above mentioned variables on microstructure and intercalation/exfoliation of organic modifier clay/epoxy nanocomposites. The results from this work could be used to determine the best processing condition to obtain appropriate levels of d-spacing, glasss transition temperature and storage modulus in organic modifier clay/epoxy nanocomposites.

Analysis of the Effects of Out-of-Sphericity in Spiral Grooved Hemispherical Air dynamic Bearings (나선 홈을 가진 반구형 공기 동압베어링에서 진구도 오차의 영향 해석)

  • Choe, U-Cheon;Sin, Yong-Ho;Choe, Jeong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.145-150
    • /
    • 2000
  • Out-of-sphericity is degree of deformation of an air bearing sphere deviated from a perfect sphere. This paper investigates numerically the effect of out-of-sphericity error on the radial stiffness of an air bearing Three types of out-of-sphericity modes are considered. in this study the stiffness is calculated from pressure distribution at the bearing surface which is obtained by solving th Reynolds equation. in some cases large out-of-sphericity errors are found to improve the stiffnesses of air bearings. This implies that an air bearing of perfect hemispheres is not necessarily of the best performance. Thus much labor and cost in manufacturing air bearings can be saved, In addition the radial stiffness of an air bearing depends greatly on the application direction.

  • PDF

A Study on the Improvement of Surface Roughness of Impeller by Selection of Tool Path and Posture and Control of Feedrate (공구경로 및 자세의 선정과 이송률 제어를 통한 임펠러 표면조도 개선에 관한 연구)

  • Hwang, Jong-Dae;Oh, Ji-Young;Jung, Yoon-Gyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1088-1095
    • /
    • 2008
  • 5-axis NC machining has a good advantage of the accessibility of tool motion by adding two rotary axes. It offers numerous advantages such as expanding machining fields in parts of turbo machineries like impeller, propeller, turbine blade and rotor, reasonable tool employment and great reduction of the set-up process. However, as adding two rotary axes, it is difficult to choose suitable machining conditions in terms of tool path, tool posture, feedrate control at a tool tip and post-processing. Therefore in this paper, it is proposed to decide suitable machining condition through an experimental method such as adopting various tool paths, tool postures, and feedrate types. Machining experiment on AL7075 for impeller is performed to define suitable machining condition, and measurement of surface roughness on machined surfaces depended on each machining condition is performed. By defining suitable machining condition, we should have conclusion as improving the surface quality in the aspect of surface roughness and machined shape of surface.

Shape Optimization of a Switched Reluctance Motor Having 6/4 Pole Structure for the Reduction of Torque Ripple Using Response Surface Methodology (반응표면법을 이용한 6/4극 구조를 갖는 스위치드 릴럭턴스 모터의 토크 리플 저감을 위한 형상 최적설계)

  • Choi, Yong-Kwon;Yoon, Hee-Sung;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.608-616
    • /
    • 2006
  • Recently, a switched reluctance motor is widely used in various industries because it has many advantages such as a simple structure, robustness, less maintenance, high torque/weight ratio, and easy speed control over other types of motors. However, a switched reluctance motor inherently produces acoustic noise and vibration caused by torque ripple. Applications of these motors where silent operation is desirable have thus been limited. In this paper, a new stator pole face having a non-uniform air-gap and a pole shoe attached to the lateral face of the rotor pole are suggested in order to minimize torque ripple. The effects of each design parameter are validated using a time-stepping finite element method. The parameters are optimized by utilizing response surface method (RSM) combined with (1+1) evolution strategy. The result shows that the optimized shape gives higher average torque and drastically reduced torque ripple.

Comparison on the Airgap Flux Density of High-Speed Slotless Machines with Radial Magnetization and Halbach Array PM Rotor (반경방향 착자형과 Halbach 배열형 영구자석 회전자를 갖는 고속 슬롯리스 기기의 공극자속밀도 특성 비교)

  • Jang, Seok-Myeong;Jeong, Sang-Seop;Ryu, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.7
    • /
    • pp.315-322
    • /
    • 2001
  • High speed brushless permanent magnet(PM) machines need a key technology to minimize the iron core losses in stator and the eddy current losses in the retained sleeve and magnets caused by slotting harmonics. Thus, slotless or iron-coreless brushless PM machines have been applied for a very high rotational speed and/or the ripple-free torque. Unfortunately, slotless or coreless PM machines have lower open-circuit field than slotted and/or iron-cored types, which cause to reduce power density. Fortunately, Halbach array can generate the strong magnetic field systems without additional magnetic materials. In this paper, the 4-pole Halbach array is applied to the high speed machine and is compared with the radial magnetized PM array in field system. The iron-/air-cored stator of PM machine is constructed with/without winding slots. Open circuit magnetic fields of each type are presented from the analytical method and finite element method. Consequently, it is confirmed that the Halbach array field system with slotless stator is more suitable to the high speed motor because it has high flux density, sinusoidal flux distribution than others.

  • PDF