• Title/Summary/Keyword: rotor system

Search Result 2,180, Processing Time 0.031 seconds

Development of Test Facility for Micro Gas Turbine (마이크로 가스터빈 시험 장치 개발)

  • Lim, Hyung-Soo;Choi, Bum-Seog;Park, Moo-Ryong;Hwang, Soon-Chan;Park, Jun-Young;Seo, Jeongmin;Bang, Je-Sung;Lim, Young-Chul;Oh, In-Kyun;Kim, Byung Ok;Cho, Ju Hyeong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.42-48
    • /
    • 2015
  • To improve the core technology of the micro gas turbine, the performance test facility was developed. This paper is focusing on the explanation of the characteristics of micro gas turbine and its assist devices. Major part of micro gas turbine were radial type of compressor, annular type of combustor, radial type of turbine, thrust foil bearing, radial foil bearing and generator. The assist devices were consist of exhaust duct, inverter, data acquisition system, load bank and test cell. Before building up the test facility, the component test was previously conducted to confirm the component performance. After the test facility was prepared, the motoring test was conducted to investigate the rotor dynamic characteristics of the micro gas turbine. Also, the part load performance test was performed. With a developed micro gas turbine test facility, the improved core technology about the micro gas turbine can be suggested to the related industries.

The Study on Reliability Improvement in Eddy Current Inspection by Signal Characteristic Optimization of Multi-coil Array Probe (다중센서 신호특성 최적화를 통한 와전류검사 신뢰성 개선연구)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.60-64
    • /
    • 2010
  • This paper introduces reliability improvement and time saving in eddy current inspection by signal characteristic optimization of multi-coil eddy current array probe. In the past, Multi-coil array probe and single probe were used for the gas turbine rotor surface inspection & defect evaluation. The multi-coil array probe was used for the broad area inspection. But the signal deviations among multi-coil array probe are maximum 28% in commercial probe. This differences were considered to impedance differences among coils, so it is very difficult to evaluate exact defect size. The signal deviations among multi-coil array probe are maximum 28% in commercial probe. So, single coil inspection was used for exact defect sizing. The purpose of this study is to improve signal deviations of multi-coil array probe. The introduced new technology can improves this deviation by adjusting input voltage in each coil. At first, apply same voltage in each coil and collect signal amplitude of each coil. And calculate new input voltage based on signal amplitude of each coil. If the signal amplitude deviation is within 5% among multi-coil array probe, the signal amplitude of multi-coil array probe is reliable. The proposed technology gives 2% signal deviation among multi-coil array probe. The proposed new technology gives reliability improvement and inspection time saving in eddy current inspection.

Reduction Chattering Error of Reed Switch Sensor for Remote Measurement of Water Meter (Reed Switch 센서를 이용한 원격 검침용 상수도 계량기에서 Chattering 오차 감소 방안 연구)

  • Ayurzana, Odgerel;Kwon, Jong-Won;Park, Yong-Man;Koo, Sang-Jun;Kim, Hie-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.377-379
    • /
    • 2007
  • To reduce the chattering errors of reed switch sensors used for automatic remote measurement of water supply system, a reed switch sensor was analyzed and improved. The operation of reed switch sensors can be described as a mechanical contact by approximation of permanent magnet piece to generate an electrical pulse. The reed switch sensors are used in measurement application by detecting the rotational or translational displacement. To apply for flow measurement devices, the reed switch sensors should keep high reliability. They are applied for the electronic digital type of water flow meters. The reed switch sensor is just installed simply on the mechanical type flow meter. A small magnet is attached on a pointer of the water meter counter rotor. Inside the reed sensor, two steel leaf springs make mechanical contact and apart as rotation of flow meter counter. The counting electrical contact pulses can be converted as the water flow amount. The MCU sends the digital flow rate data to the server using the wireless communication network. But it occurs data difference or errors by chattering noise. The reed switch sensor contains chattering error by it self at the force equivalent position. The vibrations such as passing car near to the switch sensor installed location. In order to reduce chattering error, most system uses just software methods for example using filter and also statistical calibration methods. The chattering errors were reduced by changing leaf spring structure using mechanical hysteresis characteristics.

  • PDF

Preliminary design and performance analysis of a radial inflow turbine (유기랭킨사이클용 반경류터빈의 예비설계 및 성능분석)

  • Kim, Do-Yeop;Kang, Ho-Keun;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.735-743
    • /
    • 2015
  • The major component with a significant impact on the thermodynamic efficiency of the organic Rankine cycle is the turbine. Many difficulties occur in the turbine design of an organic Rankine cycle because the expansion process in an organic Rankine cycle is generally accompanied by a dramatic change in the working fluid properties. A precise preliminary design for a radial inflow turbine is hard to obtain using the classic method for selecting the loading and flow coefficients from the existing performance chart. Therefore, this study proposed a method to calculate the loading and flow coefficient based on the number of rotor vanes and thermodynamic design requirements. Preliminary design results using the proposed models were in fairly good agreement with the credible results using the commercial preliminary design software. Furthermore, a numerical analysis of the preliminary design results was carried out to verify the accuracy of the proposed preliminary design models, and most of the dependent variables, with the exception of the efficiency, were analyzed to meet the preliminary design conditions.

Multi-MW Class Wind Turbine Blade Design Part II : Structural Integrity Evaluation (Multi-MW급 풍력발전용 블레이드 설계에 관한 연구 Part II : 구조 건전성 평가)

  • Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.311-320
    • /
    • 2014
  • Rotor blades are important devices that affect the power performance, efficiency of energy conversion, and loading and dynamic stability of wind turbines. Therefore, considering the characteristics of a wind turbine system is important for achieving optimal blade design. When a design is complete, a design evaluation should be performed to verify the structural integrity of the proposed blade in accordance with international standards or guidelines. This paper presents a detailed exposition of the evaluation items and acceptance criteria required for the design certification of wind turbine blades. It also presents design evaluation results for a 2-MW blade (KR40.1b). Analyses of ultimate strength, buckling stability, and tip displacement were performed using FEM, and Miner's rule was applied to evaluate the fatigue life of the blade. The structural integrity of the KR40.1b blade was found to satisfy the design standards.

Development of TASS Code for Non-LOCA Safety Analysis Licensing Application (Non-LOCA 인허가 해석용 TASS 코드의 개발)

  • Yoon, Han-Young;Auh, Geun-Sun;Kim, Hee-Cheol;Kim, Joon-Sung;Park, Jae-Don
    • Nuclear Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.53-66
    • /
    • 1995
  • Since the current licensed system codes for Non-LOCA safety analysis are applicable only for a specific type PWR, it is necessary to develope a new system analysis code applicable for all apes of PWRs. As a R&D program, KAERI is developing TASS code as an interactive and faster-than-real-time code for the NSSS transient simulation of both CE and Westinghouse plane. It is flexible tool for PWR analysis which gives the user complete control over the simulation through convenient input and output options. In this paper the code applicability to Westinghouse ape plants was verified by comparing the TASS prediction to plant data of loss of AC power and loss of load transients, and comparing to the prediction of RELAP5/MOD3 for feedline break, locked rotor, steam generator tube rupture and steam line break accidents.

  • PDF

The Loss of Coolant Flow Accident Analysis in Kori-1 (고리1호기 원자로 냉각재 유량상실사고 해석)

  • Kook Jong Lee;Un Chul Lee;Jin Soo Kim;Si Hwan Kim
    • Nuclear Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.256-266
    • /
    • 1985
  • The loss of coolant flow accident is analyzed for the pressurized water reactor of Korea Nuclear Unit-1. The loss of coolant flow accident is classified into three types in accordance with its severity; partial loss of coolant flow, complete loss of coolant flow and pump locked rotor accident. Analysis has been carried out in three stages; system transient and average core analysis, DNBR calculation and hot spot analysis. The purpose of developing KTRAN is to simulate the transient fast. For the DNBR calculation, the thermal hydraulic codes, SCAN and COBRA IV-1, are adopted. And for the hot spot analysis, the fuel thermal transient code LTRAN is employed. This code system should be fast responding to the transient analysis. In case the transient occurs, severity comes within a couple of seconds. So response should be fast to accomodate the following sequence of the accident. Unfortunately this purpose could not be achieved by KTRAN. However, the calculated results are well comparable with FSAR results in range. Thereby, the effectiveness of KTRAN code analysis in this type of accident is proven.

  • PDF

Development of a 100 hp HTS Synchronous Motor (100마력 고온초전도 동기전동기 개발)

  • Sohn Myung-Hwan;Baik Seung-Kyu;Lee Eon-Young;Kwon Young-Kil;Jo Young-Sik;Kim Jong-Moo;Moon Tae-Sun;Kim Yeong-Chun;Kwon Woon-Sik;Park Heui-Joo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.94-100
    • /
    • 2005
  • Korea Electrotechnology Research Institute(KERI) has successfully developed a 100hp-1800rpm-class high temperature superconducting(HTS) motor with high efficiency under partnership with Doosan Heavy Industries & Construction Co. Ltd. This motor has a HTS field winding and an air-cooled stator. The advantages of HTS motor can be represented by a reduction of 50% in both losses and size compared to conventional motors of the same rating. The cooling system is based on the heat transfer mechanism of the thermosyphon by using GM cryocooler as cooling source. The cold head is in contact with the condenser of a Ne-filled thermosyphon. Independently, the rotor assembly was tested at the stationary state and combined with stator. The HTS field winding could be cooled into below 30K. Test of open-circuit characteristics(OCC) and short-circuit characteristics(SCC) and load test with resistive load bank were conducted in generator mode. Also, load tests in motor mode driven by inverter were finished at KERI. Maximum operating current of field winding at 30K was 120A. From OCC and SCC test results synchronous inductance and synchronous reactance were 2.4mH, 0.49pu, respectively. Efficiency of this HTS machine was 93.3% in full load(100hp) test. This paper will present design, construction. and experimental test results of the 100hp HTS machine.

The Development of a Precision BLDC Servo Position Controller for the Composite Smoke Bomb Rotational Driving System (복합연막탄 선회구동장치를 위한 정밀 BLDC 서보 위치 제어기 개발)

  • Koo, Bon-Min;Park, Moo-Yurl;Choi, Jung-Keyung;Choi, Sung-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.951-954
    • /
    • 2005
  • This paper presents a study on the accuracy position Controller design for the Composite Smoke Bomb Rotational driving system using a BLDC servo motor. Function of Smoke Bomb is blind in the enermy's sight so that need to high response. The BLDC servo motor controller was designed with DSP(TMS320VC33), IGBT(Insulated Gate Bipolar. Transistor), IGBT gate driver and CPLD(EPM7128). This paper implements those control with vector control and MIN-MAX PWM. Vector control requires information about rotor positions, a resolver should be used to achieve that. The main controller is implemented with a TMS320VC33 high performance floating-point DSP(Digital Signal Process) and PWM Generator is embodied using EPM7128.

  • PDF

Modified Direct Torque Control using Algorithm Control of Stator Flux Estimation and Space Vector Modulation Based on Fuzzy Logic Control for Achieving High Performance from Induction Motors

  • Rashag, Hassan Farhan;Koh, S.P.;Abdalla, Ahmed N.;Tan, Nadia M.L.;Chong, K.H.
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.369-380
    • /
    • 2013
  • Direct torque control based on space vector modulation (SVM-DTC) protects the DTC transient merits. Furthermore, it creates better quality steady-state performance in a wide speed range. The modified method of DTC using SVM improves the electrical magnitudes of asynchronous machines, such as minimizing the stator current distortions, the stator flux with electromagnetic torque without ripple, the fast response of the rotor speed, and the constant switching frequency. In this paper, the proposed method is based on two new control strategies for direct torque control with space vector modulation. First, fuzzy logic control is used instead of the PI torque and a PI flux controller to minimizing the torque error and to achieve a constant switching frequency. The voltages in the direct and quadratic reference frame ($V_d$, $V_q$) are achieved by fuzzy logic control. In this scheme, the switching capability of the inverter is fully utilized, which improves the system performance. Second, the close loop of stator flux estimation based on the voltage model and a low pass filter is used to counteract the drawbacks in the open loop of the stator flux such as the problems saturation and dc drift. The response of this new control strategy is compared with DTC-SVM. The experimental and simulation results demonstrate that the proposed control topology outperforms the conventional DTC-SVM in terms of system robustness and eliminating the bad outcome of dc-offset.