• Title/Summary/Keyword: rotor loss

Search Result 299, Processing Time 0.031 seconds

Characteristics for rotordynamics of laminated rotor supported by rolling bearings (구름베어링으로 지지된 적층로터의 로터다이나믹 특성)

  • Kim, Yeong-Chun;Park, Chul-Hyun;Park, Hei-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.822-825
    • /
    • 2002
  • A lot of rotating machinery are generally used in industrial field and the electrical machinery such as the motor and generator account for the most of the part. Generally motor and generator have electrical loss because of eddy current. So silicon steel sheets are used in order to reduce the electrical loss and furthermore laminated rotor is used for motor and generator to eliminate the electrical loss and heat generation. However, the more high speed, large scale and high precision of the system, the more important to estimate the critical speed. In this paper verifies the variation of the critical speeds in accordance with the variation of the pressing force of lamination plate for the rotor which is supported by ball bearing with the experimental data as well.

  • PDF

Analysis of the Torque Characteristics and Loss Distribution of the Rotor Bar of an Inverter-fed Cage Induction Motor with Skewed Slots (사구슬롯이 있는 3상 농형 유도 전동기의 인버터 구동시 토오크 특성 및 회전자 바 동손분포 해석)

  • Kim, Byeong-Taek;Choe, Byeong-Il;Park, Seung-Chan;O, Gyeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.12
    • /
    • pp.797-806
    • /
    • 2000
  • In this paper, the torque characteristics and the bar loss distribution are analyzed when a general cage induction motor with skewed slots is fed by a 6-step inverter. For the electromagnetic analysis, time-stepping finite element method is used. And the multi-slice technique and sliding surface technique are respectively utilized to consider the skew effect and the rotation of the rotor. As a result, the effects of skewed rotor bar and the inverter output voltage on the characteristics of the torque and bar loss in the rotor are investigated. The simulation results are verified by measurement of flux density distribution axially in the stator teeth.

  • PDF

Analysis on Rotor Losses in High-Speed Motor/Generator with 3-Phase Rectifier (3상 브릿지 정류기를 갖는 초고속 전동발전기의 회전자 손실 해석)

  • Jang Seok-Myeong;Cho Han-Wook;Jeong Yeon-Ho;Yang Hyun-Sup
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.761-763
    • /
    • 2004
  • Due to the high peripheral speed of the rotor and the relatively high conductivity of the magnets used, rotor eddy current loss can be substantial. On the basis of the coupled FEM and analytical method, this paper deals with the rotor loss analysis in permanent magnet high-speed machine with 3-phase rectifier.

  • PDF

Numerical Analysis on Effects of the Boundary Layer Fence Equipped on the Hub of Rotor in the First Stage Axial Flow Gas Turbine (1단 축류 가스터빈내 동익의 허브면에 장착된 경계층 펜스의 효과에 대한 수치 해석적 연구)

  • Yoon, Deok-Kyu;Kim, Jae-Choon;Kim, Dae-Hyun;Lee, Won-Suk;Chung, Jin-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.8-16
    • /
    • 2009
  • The objective of this study is to investigate the three-dimensional turbulence flow characteristics of a rotor passage of an one-stage axial flow gas turbine and to investigate the effects of a boundary layer fence installed on the hub endwall of the rotor passage. Secondary flows occurring within the rotor passage (e.g. horseshoe vortex, passage vortex, and cross flow) cause secondary loss and reduce turbine efficiency. To control these secondary flows, a boundary layer fence measuring half the height of the thickness of the inlet boundary layer was installed on the hub endwall of the rotor passage. This study was performed numerically. The results show that the wake and secondary flows generated by the stator reduced the rotor load to constrain the development of cross flow and secondary flow reinforced by the rotor passage. In addition, the secondary vortices occurring within the rotor passage were reduced by the rotation of the rotor. Although, the boundary layer fence induced additional vortices, giving rise to an additional loss of turbine, its presence was shown to reduce the total pressure loss when compared to effects of the case without fence regardless of the relative position of blades by enervating secondary vortices occurred within the rotor passage.

Effects of Incidence Angle on the Three-Dimensional Flow and Aerodynamic Loss Downstream of a High-Turning Turbine Rotor Blade (입사각이 고선회 터빈 동익 하류에서의 3차원 유동 및 압력손실에 미치는 영향)

  • Chae, Byoung-Joo;Lee, Sang-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2591-2596
    • /
    • 2007
  • The effect of incidence angle on the three-dimensional flow and aerodynamic loss in the downstream region of a high-turning turbine rotor blade has been investigated with a straight miniature five-hole probe. The incidence angle is changed to be +10, +5, 0, -10, -20, -30 and -40 degrees. The results show that the positive incidence reinforces the three-dimensional vortical flows within the turbine passage including the passage vortex, but the negative incidence weaken them significantly. A small increment in the positive incidence angle results in a remarkable aerodynamic loss increase, while increasing the incidence angle in the negative range leads to a very small change in the aerodynamic loss.

  • PDF

An Optimal Current Distribution Method of Dual-Rotor BLDC Machines

  • Kim, Sung-Jung;Park, Je-Wook;Im, Won-Sang;Jung, Hyun-Woo;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.250-255
    • /
    • 2013
  • This paper proposes an optimal current distribution method of dual-rotor brushless DC machines (DR-BLDCMs) which have inner and outer surface-mounted permanent-magnet rotors. The DR-BLDCM has high power density and high torque density compare to the conventional single rotor BLDCM. To drive the DR-BLDCM, dual 3-phase PWM inverters are required to excite the currents of a dual stator of the DR-BLDCM and an optimal current distribution algorithm is also needed to enhance the system efficiency. In this paper, the copper loss and the switching loss of a DR-BLDCM drive system are analyzed according to the motor parameters and the switching frequency. Moreover, the optimal current distribution method is proposed to minimize the total electrical loss. The validity of the proposed method was verified through several experiments.

Comparisons of Aerodynamic Loss Generated by a Squealer-Tip Turbine Rotor Blade with That by a Plane-Tip One (평면팁과 스퀼러팁 터빈 동익의 압력손실 특성 비교)

  • Chae, Byoung-Joo;Lee, Sang-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.161-164
    • /
    • 2006
  • Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a high-turning first-stage turbine rotor blade with a squealer tip have been measured with a straight miniature five-hole probe for the tip gap-to-chord ratio, h/e, of 2,0%. This squealer tip has a indent-to-chord ratio, $h_{st}/c$, of 5.5%. The results are compared with those for a plane tip ($h_{st}/c\;=\;0.0%$). The squealer tip tends to reduce the mass flow through the tip gap and to suppress the development of the tip-leakage vortex. Therefore, it delivers lower aerodynamic loss in the near-tip region than the plane tip does. At the mid-span, however, the aerodynamic loss has nearly the same value for the two different tips.

  • PDF

Three-Dimensional Flow and Aerodynamic Loss Downstream of a Turbine Rotor Blade with a Squealer Tip (스퀄러팁 터빈 동익 하류에서의 3차원 유동 및 압력손실)

  • Chae, Byoung-Joo;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.913-920
    • /
    • 2006
  • Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a high-turning first-stage turbine rotor blade with a squealer tip have been measured with a straight miniature five-hole probe for the tip gap-to-chord ratio, h/c, of 2.0%. This squealer tip has a indent-to-chord ratio, $h/{st}/c$, of 5.5%. The results are compared with those for a plane tip $(h_{st}/c=0.0%)$. The squealer tip tends to reduce the mass flow through the tip gap and to suppress the development of the tip-leakage vortex. Therefore, it delivers lower aerodynamic loss in the near-tip region than the plane tip does. At the mid-span, however, the aerodynamic loss has nearly the same value for the two different tips.

Numerical simulation and investigation of jet impingement cooling heat transfer for the rotor blade

  • Peiravi, Amin;Bozorg, Mohsen Agha Seyyed Mirza;Mostofizadeh, Alireza
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.537-551
    • /
    • 2020
  • Investigation of leading edge impingement cooling for first stage rotor blades in an aero-engine turbine, its effect on rotor temperature and trailing edge wake loss have been undertaken in this study. The rotor is modeled with the nozzle for attaining a more accurate simulation. The rotor blade is hollowed in order for the coolant to move inside. Also, plenum with the 15 jet nozzles are placed in it. The plenum is fed by compressed fresh air at the rotor hub. Engine operational and real condition is exerted as boundary condition. Rotor is inspected in two states: in existence of cooling technique and non-cooling state. Three-dimensional compressible and steady solutions of RANS equations with SST K-ω turbulent model has been performed for this numerical simulation. The results show that leading edge is one of the most critical regions because of stagnation formation in those areas. Another high temperature region is rotor blade tip for existence of tip leakage in this area and jet impingement cooling can effectively cover these regions. The rotation impact of the jet velocity from hub to tip caused a tendency in coolant streamlines to move toward the rotor blade tip. In addition, by discharging used coolant air from the trailing edge and ejecting it to the turbines main flow by means of the slot in trailing edge, which could reduce the trailing edge wake loss and a total decrease in the blade cooling loss penalty.

Rotor Loss Analysis in Permanent Magnet High-Speed Machine Using Coupled FEM and Analytical Method

  • Jang Seok-Myeong;Cho Han-Wook;Lee Sung-Ho;Yang Hyun-Sup
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.272-276
    • /
    • 2005
  • This paper deals with the method to calculate the rotor eddy current losses of permanent magnet high-speed machines considering the effects of time/space flux harmonics. The flux harmonics caused by the slot geometry in the stator is calculated from the time variation of the magnetic field distribution obtained by the magneto-static finite element analysis and double Fast Fourier Transform. And, using the analytical approach considering the multiple flux harmonics and the Poynting vector, the rotor losses is evaluated in each rotor composite. Using this method is simple and workable for any kind of stator slot shape for rotor loss analysis.