• Title/Summary/Keyword: rotor loss

Search Result 299, Processing Time 0.035 seconds

Rotating helium-recondensing system using Roebuck refrigerator (Roebuck 냉동기를 응용한 회전형 헬륨 재응축 장치)

  • 정상권;이창규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.464-471
    • /
    • 1999
  • This paper describes a design of the helium-recondensing system utilizing cascade Roebuck refrigerators. Superconducting generator or motor has the superconducting field winding in its rotor that should be continuously cooled by cryogen. Since liquid helium transfer from the stationary system to the rotor is problematic, cumbersome, and inefficient, the novel concept of a rotating helium-recondensing system is contrived. The vaporized cold helium inside the rotor is isothermally compressed by centrifugal force and expanded sequentially in cascade refrigerators until the helium is recondensed at 4.2K. There is no helium coupling between the rotor and the stationary liquid helium storage. Thermodynamic analysis of the cascade refrigeration system is performed to determine the key design parameters. The loss mechanisms are also explained to identify entropy generation that degrades the performance of the system.

  • PDF

An Optimum Design of the Compressor Wheel and the Rotor-Bearing System of a Two-Stage Compressor (이단 압축기의 임펠러 및 시스템에 대한 최적설계)

  • Lee, Yong-Bok;Kim, Jong-Rip;Choi, Dong-Hoon;Kim, Kwang-Ho;Kim, Chang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.129-134
    • /
    • 2001
  • The paper presents the optimal design of a oil-free two-stage compressor, which is driven by 75 kW motor at an operating speed of 39,000 rpm, and the pressure ratio of which is up to 4. First, an attempt is made to obtain the optimal design of a bump bearing which supports a compressor rotor. Second, bump bearings and shaft are considered simultaneously, and the weighted sum of rotor weight and frictional torque is minimized. Finally, the optimal geometry of compressor wheel is considered. The mean efficiency and the - minimum efficiency are maximized respectively. The results presented in this paper provide important design information necessary to reduce the energy loss.

  • PDF

Optimal Design of Line-start Permanent Magnet Motor for High efficiency Performance with double-barrier rotor design (단상 유도형 동기 전동기의 효율 향상을 위한 회전자 형상 최적화)

  • Fang, Liang;Lee, Byeong-Hwa;Hong, Jung-Pyo;Nam, Hyuk;Ha, Seung-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.768-769
    • /
    • 2008
  • This paper examines an design of double-barrier rotor structure for improving the efficiency performance in a single-phase line-start permanent magnet(LSPM) motor. By utilizing the advantages of double-barrier rotor design that by increasing reluctance torque generation to compensate magnet torque production, the copper loss reduction is achieved. The optimal approach of response surface methodogy(RSM) is performed for determining a optimum double-barrier rotor structure. The improving of efficiency performance is confirmed by finite element method(FEM) and test.

  • PDF

Characteristics of Rotor Losses in High-Speed Motor/Generator (고속 전동/전기의 손실 특성)

  • Jang, S.M.;Cho, H.W.;Lee, S.H.;Cho, S.K.;Jeong, Y.H.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.163-165
    • /
    • 2002
  • High-speed permanent magnet machines are currently being developed for a number of applocations including gas-turbine generator sets and machine tools. Due to the high peripheral speed of the rotor and the relatively high conductively of the magnets used, rotor eddy current loss can be substantial. On the basis of analytical and finite element method, this paper deals with an analytical method for calculating eddy current losses in the rotor with permanent magnet and retaining ring.

  • PDF

Helium Recondensing System Utilizing Cascade Roebuck Refrigerators

  • Jeong, Sang-Kwon;Lee, Chang-Gyu;Jung, Je-Heon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.108-118
    • /
    • 2000
  • This paper describes a design of the helium-recondensing system utilizing cascade Roebuck refrigerators. Superconducting generator or motor has the superconducting field wind-ing in its rotor that should be continuously cooled by cryogen. Since liquid helium transfer from the stationary system to the rotor is problematic, cumbersome, and inefficient, the novel concept of a rotating helium-recondensing system is contrived. The vaporized cold helium inside the rotor is isothermally compressed by centrifugal force and expanded sequentially in cascade refrigerators until the helium is recondensed at 4.2 K. There is no helium coupling between the rotor and the stationary liquid helium storage. Thermodynamic analysis of the cascade refrigeration system is performed to determine the key design parameters. The loss mechanisms are explained to identify entropy generation that degrades the performance of the system.

  • PDF

Calculation of Resistance of Cage Rotor End Ring using 3-D Finite Element Method (3차원 유한요소법을 이용한 농형유도전동기 단락환의 저항계산)

  • Bak, Min-Woo;Lee, Bok-Yong;Jung, Hae-Duk;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.92-94
    • /
    • 1995
  • This paper is to describe a method for calculating resistance of cage rotor end-ring, based on 3-D finite element method using magnetic vector potential $\vec{A}$ and electric scalar potential ${\phi}$. The induced current of a cage rotor flows through the bars of a cage rotor. The current completes their closed paths by passing around the end-ring. The end-ring may contribute a significant influence to the performance of machine. The resistance under consideration of skin effect is calculate by using Joule's loss equation.

  • PDF

Clearance Variation Effects on Micro Wave Rotor Operation

  • Okamoto, Koji;Yamaguchi, Kazuo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.855-861
    • /
    • 2008
  • Micro wave rotor is expected to improve the performance of micro gas turbines drastically. In the present study, a micro wave rotor test rig was designed and built for micro gas turbines of 1-10 kW output range, and its test runs were carried out with cold air flow. In the previous experiments, the leakage loss had large influence on its operating condition. Therefore, abradable coating was applied on the end walls to achieve the operation with zero clearance for leakage reduction and its improvement on the operating condition is discussed in this study.

  • PDF

Operation and Generation Characteristic of 100MW-Class Wound Rotor Synchronous Generator According to Number of Slots (슬롯 수에 따른 100MW급 권선형 동기발전기 발전특성 및 운전특성 비교)

  • Kim, Chang-Woo;Park, Yo-Han;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.4
    • /
    • pp.523-531
    • /
    • 2019
  • This paper deals with a wound-field synchronous machines(WFSM), with an electromagnet on its salient rotor, as an alternative to a permanent magnet in the rotor. We then examine the power performance characteristics, loss characteristics, V-curves and large short-circuit ratios for a large-scale synchronous generator, considering the leading and lagging operations, based on the finite-element method. We predict the performance of a 100MVA-class generator based on the operating range for a constant short-circuit ratio. At the last, We compared with the electromagnetic characteristics of three model according to number of slots.

Design, analysis, and control of a variable electromotive-force generator with an adjustable overlap between the rotor and the stator

  • Zhu, W.D.;Goudarzi, N.;Wang, X.F.;Kendrick, P.
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.139-150
    • /
    • 2018
  • A variable electromotive-force generator (VEG), which is a modified generator with an adjustable overlap between the rotor and the stator, is proposed to expand the operational range of a regular generator through a simple and robust active control strategy. It has a broad range of applications in hybrid vehicles, wind turbines, water turbines, and similar technologies. A mathematical model of the VEG is developed, and a novel prototype is designed and fabricated. The performance of the VEG with an active control system, which adjusts the overlap ratio based on the desired output power at different rotor speeds for a specific application, is theoretically and experimentally studied. The results show that reducing the overlap between the rotor and the stator of the generator results in reduced torque loss of the generator and an increased rotational speed of the generator rotor. A VEG can improve the fuel efficiency of hybrid vehicles; it can also expand operational ranges of wind turbines and water turbines and harness more power.

Online Strain Measurement at Multiple Points on a Rotating Blade with Fiber Bragg Grating Sensors and a Rotary Optical Coupler (광섬유 격자 센서와 회전 광학 커플러를 사용한 회전하는 블레이드 여러 지점에서의 온라인 변형률 측정)

  • Lee, Jong-Min;Hwang, Yo-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.77-82
    • /
    • 2008
  • Strain-gauges have been dominantly used to measure strain at various points on a rotor, however, either a slip ring or telemetry has to be used to send sensor signals to data acquisition instruments at stationary side. Both slip ring and telemetry have numerous inherent problems which force severe limitations in real applications. This paper introduces a new rotor condition monitoring system using FBG(Fiber Bragg Grating) sensors and a rotary optical coupler. A single optical fiber with many FBG sensors is installed on the rotor and an optical dynamic interrogator is installed at stationary side. The sensor signal connection between rotating part and stationary part is made by the rotary optical coupling method which makes use of light's unique characteristic-light travels through space. Broad band light source from the interrogator travels to the optical fiber on the rotor and reflected FBG sensor signals travel back to the optical fiber on stationary side and are connected to the interrogator. Rotary optical coupler's insertion loss change due to rotation is compensated by using a reference sensor installed at the center of the rotor. The proposed system's performance has been successfully demonstrated by accurately measuring strains at 5 points on a blade rotating at high speed.