• 제목/요약/키워드: rotor fault

검색결과 168건 처리시간 0.033초

Comparative Study between Two Protection Schemes for DFIG-based Wind Generator Fault Ride Through

  • Okedu, K.E.;Muyeen, S.M.;Takahashi, R.;Tamura, J.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권1호
    • /
    • pp.8-16
    • /
    • 2012
  • Fixed speed wind turbine generators system that uses induction generator as a wind generator has the stability problem similar to a synchronous generator. On the other hand, doubly fed induction generator (DFIG) has the flexibility to control its real and reactive powers independently while being operated in variable speed mode. This paper focuses on a scheme where IG is stabilized by using DFIG during grid fault. In that case, DFIG will be heavily stressed and a remedy should be found out to protect the frequency converter as well as to allow the independent control of real and reactive powers without loosing the synchronism. For that purpose, a crowbar protection switch or DC-link protecting device can be considered. This paper presents a comparative study between two protective schemes, a crowbar circuit connected across the rotor of the DFIG and a protective device connected in the DC-link circuit of the frequency converter. Simulation analysis by using PSCAD/EMTDC shows that both schemes could effectively protect the DFIG, but the latter scheme is superior to the former, because of less circuitry involved.

Implementation of Under Voltage Load Shedding for Fault Induced Delayed Voltage Recovery Phenomenon Alleviation

  • Lee, Yun-Hwan;Park, Bo-Hyun;Oh, Seung-Chan;Lee, Byong-Jun;Shin, Jeong-Hoon;Kim, Tae-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.406-414
    • /
    • 2014
  • Significant penetration of induction motor loads into residential neighborhood and commercial regions of local transmission systems at least partially determine a vulnerability to a fault induced delayed voltage recovery (FIDVR) event. Highly concentrated induction motor loads with constant torque could stall in response to low voltages associated with system faults. FIDVR is caused by wide spread stalling of small HVAC units (residential air conditioner) during transmission level faults. An under voltage load shedding scheme (UVLS) can be an effective component in a strategy to manage FIDVR risk and limit the any potential disturbance. Under Voltage Load Shedding take advantage of the plan to recovery the voltage of the system by shedding the load ways to alleviation FIDVR.

Detection of Incipient Faults in Induction Motors using FIS, ANN and ANFIS Techniques

  • Ballal, Makarand S.;Suryawanshi, Hiralal M.;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • 제8권2호
    • /
    • pp.181-191
    • /
    • 2008
  • The task performed by induction motors grows increasingly complex in modern industry and hence improvements are sought in the field of fault diagnosis. It is essential to diagnose faults at their very inception, as unscheduled machine down time can upset critical dead lines and cause heavy financial losses. Artificial intelligence (AI) techniques have proved their ability in detection of incipient faults in electrical machines. This paper presents an application of AI techniques for the detection of inter-turn insulation and bearing wear faults in single-phase induction motors. The single-phase induction motor is considered a proto type model to create inter-turn insulation and bearing wear faults. The experimental data for motor intake current, rotor speed, stator winding temperature, bearing temperature and noise of the motor under running condition was generated in the laboratory. The different types of fault detectors were developed based upon three different AI techniques. The input parameters for these detectors were varied from two to five sequentially. The comparisons were made and the best fault detector was determined.

전류신호 분석을 통한 저널베어링 이상상태 진단 (Diagnosis of a Journal Bearing Fault via Current Signature Analysis)

  • 박진석;허형;정경훈;이규만;박근배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.119-122
    • /
    • 2005
  • A study on motor current signature analysis has been executed for monitoring the fault of journal bearing due to wear. The air gap eccentricity of motor produces specific frequencies in motor current, the supplied current frequency plus and minus rotational rotor frequency. The air gap eccentricity is simulated by the clearance of Journal bearing. The amplitudes of the specific frequencies increase with the increasing clearances. The amplitudes of the specific frequencies continue to increase over the wear limit that is used in the manufacturer of the test motor. Though clear relations between the amplitudes of the specific frequencies and the clearances are not obtained in this paper, the specific frequencies can be used as an indicator of a journal bearing fault. Further study is necessary to make out the quantitative relations between the specific frequencies and the clearances.

  • PDF

유도전동기의 운전 특성 예측을 위한 동적 시뮬레이터 구성 (Implementation of the Dynamic Simulator for Predicting Operating Characteristics of Three-Phase Induction Motors)

  • 변한섭;한성진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.906-908
    • /
    • 2000
  • This paper presents dynamic modeling and simulation of induction motors. Equivalent circuit parameters measured by do test, no-load test and locked-rotor test were used as the input data for computer simulation. Operating characteristics of an induction motor were predicted by Matlab/simulink when changing load torque, opening and reclosing of phase a of the stator and three-phase fault at machine terminals.

  • PDF

Stator Current Processing-Based Technique for Bearing Damage Detection in Induction Motors

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1439-1444
    • /
    • 2005
  • Induction motors are the most commonly used electrical drives because they are rugged, mechanically simple, adaptable to widely different operating conditions, and simple to control. The most common faults in squirrel-cage induction motors are bearing, stator and rotor faults. Surveys conducted by the IEEE and EPRI show that the most common fault in induction motor is bearing failure (${\sim}$40% of failure). Thence, this paper addresses experimental results for diagnosing faults with different rolling element bearing damage via motor current spectral analysis. Rolling element bearings generally consist of two rings, an inner and outer, between which a set of balls or rollers rotate in raceways. We set the experimental test bed to detect the rolling-element bearing misalignment of 3 type induction motors with normal condition bearing system, shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. This paper takes the initial step of investigating the efficacy of current monitoring for bearing fault detection by incipient bearing failure. The failure modes are reviewed and the characteristics of bearing frequency associated with the physical construction of the bearings are defined. The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT, Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. The test results clearly illustrate that the stator signature can be used to identify the presence of a bearing fault.

  • PDF

이중여자 유도발전기에 의한 가변속 풍력 발전시스템의 동특성 해석 (Dynamic Analysis of Variable Speed Wind Power Systems with Doubly-Fed Induction Generators)

  • 최장영;장석명
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권6호
    • /
    • pp.325-336
    • /
    • 2006
  • This paper deals with the dynamic analysis of variable speed wind power systems with doubly-fed induction generators (DFIG). First, the mathematical modeling of wind farm which consists of turbine rotor, DFIG, rotor side and grid side converter and control systems is presented. In particular, the equation for dynamic modeling of the DFIG and the AC/DC/AC converter is expressed as dq reference frame. And then, on the basis of mathematical modeling for each component of wind farm, dynamic simulation algorithms for speed and pitch angle control of wind turbine and generated active and reactive power control of the DFIG and the AC/DC/AC converter are established. Finally, Using the MATLAB/SIMULINK, this paper presents dynamic simulation model for 6MW wind power generation systems with the DFIG considering distribution systems and performs the dynamic analysis of wind power systems in steady state. Moreover, this paper also presents the dynamic performance for the case when the voltage sag in grid source and phase fault in bus are occurred.

Influence of Different Frequency Harmonic Generated by Rectifier on High-speed Permanent Magnet Generator

  • Qiu, Hongbo;Wei, Yanqi;Yang, Cunxiang;Fan, Xiaobin
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1956-1964
    • /
    • 2018
  • Since the stator winding of High-Speed Permanent Magnet Generator (HSPMG) has few winding turns and low inductance value, it is more prone to be influenced by harmonic current. Moreover, the operation efficiency and the torque stability of HSPMG will be greatly influenced by harmonic current. Taking a 117 kW, 60 000 rpm HSPMG as an example, in order to analyze the effects of harmonic current on HSPMG in this paper, the 2-D finite element electromagnetic field model of the generator was established and the correctness of the model was verified by testing the generator prototype. Based on the model, the losses and torque of the generator under different frequency harmonic current were studied. The change rules of the losses and torque were found out. Based on the analysis of the influence of the harmonic phase angle on torque ripple, it is found that the torque ripple could be weakened through changing the harmonic phase angle. Through the analysis of eddy current density in rotor, the change mechanism of the rotor eddy current loss was revealed. These conclusions can contribute to reduce harmonic loss, prevent demagnetization fault and optimize torque ripple of HSPMG used in distributed power supply system.

New Control Scheme for the Wind-Driven Doubly Fed Induction Generator under Normal and Abnormal Grid Voltage Conditions

  • Ebrahim, Osama S.;Jain, Praveen K.;Nishith, Goel
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.10-22
    • /
    • 2008
  • The wind-driven doubly fed induction generator (DFIG) is currently under pressure to be more grid-compatible. The main concern is the fault ride-through (FRT) requirement to keep the generator connected to the grid during faults. In response to this, the paper introduces a novel model and new control scheme for the DFIG. The model provides a means of direct stator power control and considers the stator transients. On the basis of the derived model, a robust linear quadratic (LQ) controller is synthesized. The control law has proportional and integral actions and takes account of one sample delay in the input owing to the microprocessor's execution time. Further, the influence of the grid voltage imperfection is mitigated using frequency shaped cost functional method. Compensation of the rotor current pulsations is proposed to improve the FRT capability as well as the generator performance under grid voltage unbalance. As a consequence, the control system can achieve i) fast direct power control without instability risk, ii) alleviation of the problems associated with the DFIG operation under unbalanced grid voltage, and iii) high probability of successful grid FRT. The effectiveness of the proposed solution is confirmed through simulation studies on 2MW DFIG.

가스터빈 엔진의 손상 진단을 위한 퍼지 경향감시 방법에 관한 연구 (A Study on Fuzzy Trend Monitoring Method for Fault Detection of Gas Turbine Engine)

  • 공창덕;고성희;기자영;오성환;김지현;고한영
    • 한국추진공학회지
    • /
    • 제12권6호
    • /
    • pp.1-6
    • /
    • 2008
  • 본 연구에서는 계측 데이터의 성능 추이를 분석하여 가스터빈 엔진의 결함 여부를 탐지하기 위한 퍼지 경향감시 방법을 제안하였다. 제안된 경향감시 방법은 연료유량, 배기가스 온도, 로터회전수, 진동수와 같은 중요 엔진 파라미터를 모니터링 하여 시간에 따른 변화를 분석하여 엔진 상태를 진단하는 것이다. 이를 위해 먼저 선형회귀분석을 통해 엔진 상태 변화를 수식화하고 퍼지 로직을 통해 진단 결과를 분석하여 예측되는 손상 원인을 제시한다.