• 제목/요약/키워드: rotor drive

검색결과 580건 처리시간 0.025초

EV용 충전 인덕터용 PFC 및 제로 토크제어 (PFC and Zero Torque Control of SRM for EV Battery Charging)

  • ;;;이동희;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.652-654
    • /
    • 2015
  • Integrated switched reluctance motor drive as an electric vehicle battery charger is presented in this paper. The SRM, which is used as the traction power in the driving mode, is used in the charge circuit to improve the power factor of charging system. The charging circuit can share the power switches of the asymmetric converter and phase windings of SRM to charge the battery, and can reduce the size and cost of the system in the plug-in system. To keep the rotor at standstill, zero torque control method is proposed. Since the inductances of the SRM windings are not same at any stop position, the charger controller controls the reference current to satisfy the total charging current with PFC and zero torque condition. A novel cubic equation method is proposed as a current reference distributor of the charging controller. Simulations are performed by MATLAB software and results satisfy the Effectiveness of proposed battery charging system.

  • PDF

약계자영역에서 루엔버기관측기를 이용한 유도전동기의 속도 센서리스 고정자자속 기준제어 (Speed Sensorless Stator Flux-Oriented Control of Induction Motor In the Field Weakening Region Using Luenberger Observer)

  • 권태성;신명호;현동석
    • 전력전자학회논문지
    • /
    • 제8권5호
    • /
    • pp.375-380
    • /
    • 2003
  • 기존의 속도센서가 없는 유도전동기의 고정자자속 기준제어에서 추정된 속도가 이산화 될 때, 이산화에 의한 모델링오차 때문에 회전자속도 추정에 오차가 발생한다. 이 오차는 저역통과필터에 의해 제거되지만 추정된 속도는 과도상태에서 지연이 발생해서 약계자영역으로의 천이가 지연되는 문제가 발생하게 된다. 본 논문에서는 기존의 고정자자속 기준제어 속도 센서리스 시스템의 약계자영역에서 추정된 속도의 지연으로 발생하는 문제점을 고찰하고 또한 루엔버거관측기를 사용하여 정확한 속도 추정을 학 수 있는 방법을 제안한다.

전기자동차 기계적 구동계의 모델링 및 비틀림 진동특성 분석 (Modeling of the Mechanical Drivetrain of an Electric Vehicle for Investigation of Torsional Oscillation Characteristics)

  • 김호기;오중석;김삼균
    • 대한기계학회논문집A
    • /
    • 제32권10호
    • /
    • pp.866-872
    • /
    • 2008
  • Torsional oscillations of the mechanical drivetrain in electric vehicles are generated under rapid driving conditions. These lead to an uncomfortable jerking of the vehicle and to an increased stress of the mechanical components. To analyze this phenomenon, a drivetrain model is constructed with lumped parameters. The model parameters are identified by geometrical design data and experimental tests. The proposed model is validated by simulation and experimental tests in the time and the frequency domains. As a result, the torsional oscillations are observed at 7Hz of a low damped natural frequency. Also, the analysis of the effect of the parameter variations on the oscillations shows that the oscillation characteristic is mainly dependent on the rotor inertia, and the stiffness of the mounting of the drive aggregate and the driveshaft. The results will be utilized on the basis of the design of an electric drivetrain and an active control of drivetrain oscillations.

An Analysis of Dynamic Behavior of Fluid Dynamic Bearing for Hard Disk Drive Spindle Motor

  • Song, Young-Han;Yoo, Jin-Gyoo;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • 제4권1호
    • /
    • pp.18-26
    • /
    • 2003
  • Recently, fluid dynamic bearings (EDBs) have important applications in miniature rotating machines such as those found in the computer information storage industry, due to their outstanding low acoustic noise and NRRO (Non-Repeatable Run Out) characteristics. This research investigates the dynamic behavior of fluid dynamic bearings composed of hydrodynamic herringbone groove journal and spiral groove thrust bearing. The five degrees of freedom of FDB are considered to describe the real motion of a general rotor bearing system. The Reynolds equation and five nonlinear equations of motion for the dynamic behavior are solved simultaneously, The incompressible Reynolds equation is solved by using the finite element method (FEM) in order to calculate the pressure distribution in a fluid film and the five equations of motion by using the Runge-Kutta method. The reaction forces and moments are obtained by integrating the pressure along the fluid film. Numerical results are validated by comparing with the previously published experimental and numerical results. As a result the dynamic behavior of FDB spindle such as orbit, floating height, and angular orbit is investigated by considering the conical motion under the static and dynamic load conditions.

지지구조와 헤드-서스펜션-액추에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석 (Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Considering the Flexibility of Supporting Structures and an Head-suspension-actuator in a HDD)

  • 서찬희;이호성;장건희
    • 한국소음진동공학회논문집
    • /
    • 제17권1호
    • /
    • pp.24-32
    • /
    • 2007
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

HSDI 디젤 엔진 연비 저감 개발에 대한 연구 (Study of HSDI Diesel Engine Development for Low Fuel Consumption)

  • 전제록;유준;윤금중
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.138-143
    • /
    • 2006
  • Modification of injector, oil ring tension reduction and oil pump rotor re-matching with optimization of relevant engine control parameters could drive fuel consumption reduction of HSDI diesel engine. A 5 holes injector was replaced with a 6 holes with smaller nozzle hole diameter and 1.5 k factor, and evaluated in a view of fuel economy and emission trade-offs. With introducing smaller nozzle hole diameter injector, PM(Particulate Matter) was drastically decreased for low engine load and low engine rpm. Modification of oil pump and oil ring was to reduce mechanical friction and be proved to better fuel economy. Optimization of engine operating conditions was a great help for the low fuel consumption. Influence of the engine operating parameters· including pilot quantity, pilot interval, air mass and main injection timing on fuel economy, smoke and NOx has been evaluated with 14 points extracted from NEDC(New European Driving Cycle) cycle. The fuel consumption was proved to $7\%$ improvement on an engine bench and $3.7\%$ with a vehicle.

Integrated Sliding-Mode Sensorless Driver with Pre-driver and Current Sensing Circuit for Accurate Speed Control of PMSM

  • Heo, Sewan;Oh, Jimin;Kim, Minki;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1154-1164
    • /
    • 2015
  • This paper proposes a fully sensorless driver for a permanent magnet synchronous motor (PMSM) integrated with a digital motor controller and an analog pre-driver, including sensing circuits and estimators. In the motor controller, a position estimator estimates the back electromotive force and rotor position using a sliding-mode observer. In the pre-driver, drivers for the power devices are designed with a level shifter and isolation technique. In addition, a current sensing circuit measures a three-phase current. All of these circuits are integrated in a single chip such that the driver achieves control of the speed with high accuracy. Using an IC fabricated using a $0.18{\mu}m$ BCDMOS process, the performance was verified experimentally. The driver showed stable operation in spite of the variation in speed and load, a similar efficiency near 1% compared to a commercial driver, a low speed error of about 0.1%, and therefore good performance for the PMSM drive.

300W급 이중 공극 구조 PMSM 설계 및 출력 특성에 관한 연구 (A Study on Output and Design of Permanent Magnet Synchronous Motor with Dual-gap)

  • 김승주;김윤환;최한석;문재원
    • 조명전기설비학회논문지
    • /
    • 제28권4호
    • /
    • pp.80-87
    • /
    • 2014
  • This paper suggests the dual-gap for generating power and increasing the torque of a direct-drive permanent magnet synchronous motor in a hybrid-cycle. To consider easy coil winding, we applied a structure of dual-gap for the permanent magnet synchronous motor (PMSM). Because the torque of PMSM with the dual-gap is very large, we are designed the appropriate specifications of the PMSM by selected the appropriate dual-gap slot and poles combination. The prototype model is selected by design theory for increasing torque and maximizing output power of PMSM. And the detailed structure design of the model was designed by the loading distribution method. The PMSM models were analyzed by finite element method. Finally, we have suggested appropriate rotor structure has benefit to further increasing torque and prevent decreasing of the output power in PMSM with dual-gap.

Sensor Fault Detection, Localization, and System Reconfiguration with a Sliding Mode Observer and Adaptive Threshold of PMSM

  • Abderrezak, Aibeche;Madjid, Kidouche
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1012-1024
    • /
    • 2016
  • This study deals with an on-line software fault detection, localization, and system reconfiguration method for electrical system drives composed of three-phase AC/DC/AC converters and three-phase permanent magnet synchronous machine (PMSM) drives. Current sensor failure (outage), speed/position sensor loss (disconnection), and damaged DC-link voltage sensor are considered faults. The occurrence of these faults in PMSM drive systems degrades system performance and affects the safety, maintenance, and service continuity of the electrical system drives. The proposed method is based on the monitoring signals of "abc" currents, DC-link voltage, and rotor speed/position using a measurement chain. The listed signals are analyzed and evaluated with the generated residuals and threshold values obtained from a Sliding Mode Current-Speed-DC-link Voltage Observer (SMCSVO) to acquire an on-line fault decision. The novelty of the method is the faults diagnosis algorithm that combines the use of SMCSVO and adaptive thresholds; thus, the number of false alarms is reduced, and the reliability and robustness of the fault detection system are guaranteed. Furthermore, the proposed algorithm's performance is experimentally analyzed and tested in real time using a dSPACE DS 1104 digital signal processor board.

Improved Torque Calculation of High Speed Permanent Magnet Motor with Compressor Loads Using Measured Power Factor Angle and Analytical Circuit Parameters

  • Choi, Jang-Young;Jang, Seok-Myeong;Lee, Sung-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.159-164
    • /
    • 2013
  • Difficulty of torque measurements in high-speed permanent magnet (HSPM) motors has necessitated the development of improved torque calculations. Hence, this paper presents an analytical torque calculation of a high speed permanent magnet (HSPM) motor based on the power factor angle. On the basis of analytical magnetic field solutions, the equations for circuit parameters such as back-emf and synchronous inductance are derived analytically. All analytical results are validated extensively by non-linear finite element (FE) calculations and measurements. The internal angle (${\delta}$) between the back-emf and the phase current is calculated according to the rotor speed by using analytical circuit parameters and the measured power factor because this angle is not measured but estimated in case of sensorless drive of the HSPM motor, significantly affecting torque calculation. Finally, the validity of the torque analysis method proposed in this paper is confirmed, by showing that the torque calculated on the basis of the internal angle is in better agreement with the measurements.