• Title/Summary/Keyword: rotor bearing system

Search Result 421, Processing Time 0.035 seconds

Krylov subspace-based model order reduction for Campbell diagram analysis of large-scale rotordynamic systems

  • Han, Jeong Sam
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.19-36
    • /
    • 2014
  • This paper focuses on a model order reduction (MOR) for large-scale rotordynamic systems by using finite element discretization. Typical rotor-bearing systems consist of a rotor, built-on parts, and a support system. These systems require careful consideration in their dynamic analysis modeling because they include unsymmetrical stiffness, localized nonproportional damping, and frequency-dependent gyroscopic effects. Because of this complex geometry, the finite element model under consideration may have a very large number of degrees of freedom. Thus, the repeated dynamic analyses used to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to complete within a practical design cycle. In this study, we demonstrate that a Krylov subspace-based MOR via moment matching significantly speeds up the rotordynamic analyses needed to check the whirling frequencies and critical speeds of large rotor systems. This approach is very efficient, because it is possible to repeat the dynamic simulation with the help of a reduced system by changing the operating rotational speed, which can be preserved as a parameter in the process of model reduction. Two examples of rotordynamic systems show that the suggested MOR provides a significant reduction in computational cost for a Campbell diagram analysis, while maintaining accuracy comparable to that of the original systems.

Stability Analysis of a Fluid Dynamic Journal Bearing Considering the Tilting Motion (틸팅 운동을 고려한 유체 동압 베어링의 안정성 해석)

  • Kim, Myung-Gyu;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.394-400
    • /
    • 2008
  • This paper presents an analytical method to investigate the stability of FDBs (fluid dynamic bearings) considering the tilting motion. The perturbed equations of motion are derived with respect to translational and tilting motion for the general rotor-bearing system with five degrees of freedom. The Reynolds equations and their perturbed equations are solved by using the FEM in order to calculate the pressure, load capacity, and the stiffness and damping coefficients. This research introduces the radius of gyration to the equations of notion in order to express the mass moment of interia with respect to the critical mass. Then the critical mass of FDBs is determined by solving the eigenvalue problem of the linear equations of motion. This research is numerically validated by comparing the stability chart of FDBs with the time response of the whirl radius obtained from the direct integration of the equations of motion. This research shows that the tilting motion is one of the major design considerations to determine the stability of rotating system. It also shows that the stability of FDBs considering only translation is overestimated in comparison with the stability of FDBs considering both translational and tilting motion.

  • PDF

Characterization and Detection of a Free-falling State of a Mobile HDD Using the Electromechanical Analysis in a Rotating Spindle System (스핀들 회전축계의 기전 연성 해석을 이용한 모바일 HDD의 자유 낙하 특성 및 감지에 관한 연구)

  • Park, Sang-Jin;Jang, Gun-Hee;Kim, Cheol-Soon;Han, Jae-Hyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.12-18
    • /
    • 2006
  • This research investigates the electromechanical characteristics of a spindle motor in a free-falling mobile hard disk drive before unexpected shock. Electromechanical simulation includes a time-stepping finite element analysis of the magnetic field in a speed controlled brushless DC motor and dynamic analysis of the stationary and rotating part linked by the fluid dynamic bearing under the free-falling condition. Analysis results show that the dynamic characteristics of the rotating spindle system during free-falling state have an effect on the relative motion between the stationary and rotating part of HDD. It results from the variation of reaction force in the bearing area due to the gravity force exerted on the rotating part of HDD, and the free-falling condition can be detected by observing the signal of the spindle motor and disk-head interface without using an accelerometer.

Characterization and Detection of a Free-Falling State of a mobile HDD Using Electromechanical Analysis in Rotating Spindle System (스핀들 회전축계의 기전 연성 해석을 이용한 모바일 HDD의 자유 낙하 특성 및 감지에 관한 연구)

  • Park, Sang-Jin;Jang, Gun-Hee;Kim, Cheol-Soon;Han, Jae-Hyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.324-329
    • /
    • 2005
  • This research investigates the electromechanical characteristics of a spindle motor in a free-falling mobile hard disk drive before unexpected shock. Electromechanical simulation includes a time-stepping finite element analysis of the magnetic field in a speed controlled brushless DC motor and dynamic analysis of the stationary and rotating part linked by fluid dynamic bearing under the free-failing condition. Analysis results show that the dynamic characteristics of the rotating spindle system during free-falling state have an effect on the relative motion between the stationary and rotating part of HDD. It results from the variation of reaction force in the bearing area due to the gravely force exerted on the rotating part of HDD, and the free-failing condition can be detected by observing the signal of the spindle motor and disk-head interface without using the accelerometer.

  • PDF

Abnormal High Vibration by the Accumulated Oil Carbide at the Exhaust Casing Bearing Air Seal of a Gas Turbine (가스터빈 EXHAUST 케이싱 베어링 AIR SEAL에서 오일 탄화물 축적에 의한 이상 진동)

  • Kim, Dong Kwan;Park, Sangho;Koo, Jae Raeyang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.464-469
    • /
    • 2012
  • In the electric power plant, the shaft vibration is one of the very important point for successful long-term operation, because the high reliability unit needs stable rotor dynamic system. However, in the one combined cycle power plant, the abnormal high level shaft vibration analyzed 1 X on the journal bearing has been several times suddenly tripped of Gas turbine due to the accumulated oil carbide. This paper describes how to countermeasure the abnormal shaft vibration in the journal bearing of Gas turbine exhaust bearing in the field.

  • PDF

Electromagnetic Field Analysis of Magnetic Bearing due to Stator Structure (스테이터 구조에 의한 마그네틱 베어링의 전자장해석)

  • Kim, Ki-Joon;Shin, Cheol-Gi
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • In this study, it carried out Electromagnetic Field Analysis of Magnetic Bearing due to stator structure and it got the electrical characteristics of 3 structure types of AMB(Active magnetic bearing) systems to get optimal design criteria. The results of simulation in three types of AMB, using FEM method, type 1, 2, and 3 had many paths to move magnetic flux vectors from N pole to S pole and magnetic flux lines are transferred to rotor as a shaft. The paths help to rotate the rotors. So, their data of electrical properties carry out design of magnetic bearing system and the data help to make design criteria.

A Study on the Magnetically Suspended Spindle with 16-pole Radial Magnets (16 극의 반경방향 전자석을 갖는 자기부상 주축계 연구)

  • Park, Jong-Kweon;Ro, Seung-Kook;Kyung, Jin-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.203-212
    • /
    • 2002
  • Active magnetic hearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting. This paper describes a design and test of an active magnetic bearing system with 16-pole radial magnets. The spindle is originally designed for a CNC lathe and driven by outer motor with 5.5 kW power and maximum speed 10,000 rpm. Considering static load condition and geometric restrictions, radial magnet is designed 16-pole type for smaller outer diameter of the spindle system. Dynamic system characteristics such as natural frequency, critical speed, stiffness, damping and system stabilities are simulated with a rigid rotor model including direct feedback controller. The designed spindle system is realized with digital PIDD controller to compensate phase lag of PWM amplifier and magnet coils. With levitation and step response experiment the control system characteristics are tested, and the spindle is rotated up to 10,000 rpm stab1y.

Thermohydrodynamic Analysis and Pad Temperature Measurement of Tilting Pad Journal Bearing with Worn Pad (표면이 마모된 틸팅 패드 저널베어링의 열윤활 해석 및 온도 측정)

  • Lee, Donghyun;Sun, Kyungho;Kim, Byungock;Kang, Donghyuk
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.134-140
    • /
    • 2017
  • With the increase in adoption of tilting pad journal bearings (TPJBs), various failure mechanisms related to TPJBs have been reported, of which pad wear is a frequently reported one. Pad wear causes change in geometry of the bearing, which can sometimes result in the failure of the entire system. The objective of this research is to investigate the influence of pad wear on the pad temperature, which is one of the widely used condition monitoring methods for TPJBs. For the theoretical investigation, thermohydrodynamic (THD) analysis was conducted by solving the generalized Reynolds equation and the 3D energy equation. The results of the analysis show that the temperature of the loaded pad increases while that of the unloaded pad decreases, when there is wear on the loaded pads. In addition, the minimum film thickness decreases with an increase in the wear depth. A validation test was conducted with a test rig, which mimics the axial turbine when a test rotor is supported by two TPJBs. The test bearing consists of five pads with a diameter of 60 mm, and a resistance temperature detector (RTD) is installed in the pad for temperature monitoring. The test was performed by replacing the two loaded pads with the worn pad. The test result for the TPJB with wear depth of $30{\mu}m$ show that the temperatures of the loaded pads are $8^{\circ}C$ higher and that of the unloaded pad is $2.5^{\circ}C$ lower than that of the normal TPJB. In addition, the predicted pad temperature shows good agreement with the measured pad temperatures.

Dynamic Characteristics and Instability of Submerged Plain Journal Bearings in accordance with the Cavitation Model (공동현상 모델에 따른 침수형 평면 저널베어링의 동특성 및 회전 안정성에 대한 연구)

  • Moonho Choi
    • Tribology and Lubricants
    • /
    • v.39 no.4
    • /
    • pp.139-147
    • /
    • 2023
  • Cavitation phenomena observed during the operation of a submerged plain journal bearing (PJB) can affect bearing performance parameters such as dynamic coefficients, whirl frequency ratio, and critical mass. This study presents numerical solutions of the Reynolds equation for steadily and dynamically loaded submerged PJBs with half-Sommerfeld (HS), Reynolds, and Jakobsson-Floberg-Olsson (JFO) cavitation models when the supply pressure is larger or equal to the cavitation pressure. The loads at various eccentricity ratios are identical; however, the attitude angle is approximately 6% smaller when the eccentricity ratio is between 0.2 and 0.7 and the JFO model is used, compared to that when the Reynolds model is used. Dynamic coefficients obtained with the HS and Reynolds model show good agreement with each other, except for kxz, which is sensitive to changes in the force normal to the rotor weight, and is attributed to the difference in the attitude angle obtained with each cavitation model. Stiffness coefficients are determined using the pressure distribution in the film, and therefore, when the JFO model is used, the direct stiffness coefficients are affected and show opposite signs for most eccentricity ratios. The mass-conservative JFO model can predict at least a 30% smaller critical mass compared to that using the HS and Reynolds models. Thus, the instability analysis results can change based on the cavitation model used in a submerged PJB. The results of this research indicate that the JFO model should be used when designing a rotor system supported by submerged PJBs.

Electromagnetic field analysis and performance characteristics of PMSM/G with Halbach magnetized array rotor (Halbach 자화 배열 회전자를 갖는 영구자석 동기 전동발전기의 전자기적 해석 및 성능 특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Ko, Kyoung-Jin;Choi, Sang-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.86-88
    • /
    • 2008
  • The rotational loss is one of the most important problems for the practical use of the high power Flywheel Energy Storage System (FESS). This rotational loss is divided as the mechanical loss by windage and bearing and iron loss by hysteresis loop and eddy current in the part of the magnetic field. So, In this paper, a double-sided PMSM/G without the iron loss is designed by analytical method of the magnetic field and estimation of the back-EMF constant represented as the design parameter. This design model consists of the double-sided PM rotor with Halbach magnetized any and coreless 3-phase winding stator. The results show that the double-sided PMSM/G without iron loss can be applicable to the high power FESS.

  • PDF