• Title/Summary/Keyword: rotifer Brachinus calyciflorus

Search Result 3, Processing Time 0.014 seconds

Effects of Zooplankton Grazing on the Suppression of Harmful Algal Blooms by the Rotifer Brachionus calyciflorus in Freshwater Ecosystems

  • Baek, Seung-Ho;Hong, Sung-Su;Song, Shin-Young;Lee, Hae-Ok;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • To study the influence of the rotifer Brachionus calyciflorus on harmful algal bloom suppression, we focused on assessing the rotifer's abilities using several prey species : Microcystis aeruginosa, Synechocystis sp., Chlorella vulgaris and Coelastrum sp. of the warm-weather species and the cold-weather centric diatom Stephanodiscus hantzchii. Grazing effects and growth rates of rotifers B. calyciflorus were 94.5% and $1.29d^{-1}$, respectively, for Synechocystis sp., 87.4% and $0.60d^{-1}$, respectively, for M. aeruginosa, 95.2% and $0.65d^{-1}$, respectively, for C. $vulgaris^{TM}$, 78.6% and $0.45d^{-1}$, respectively, for C. vulgaris UTEX., 86.5% and $0.99d^{-1}$, respectively, for Coelastrum sp., and 82.6% and $0.40d^{-1}$, respectively, for S. hantzchii. Of these, although the growth of Synechocystis and Coelastrum was effectively suppressed by rotifer grazing, efficient suppression effects on Stephanodiscus blooms were unexpected. The present study revealed that reproduction of B. calyciflorus was greatly influenced by its food types in the initial stages and the efficiencies of bio-agents as sole food sources vary depending on the target algae and the agent.

Size and Resting Egg Formation of Korean Rotifer, Brachionus plicatilis and B. calyciflorus (한국산 Rotifer, Brachinus plicatilis와 B. calyciflorus의 크기 및 내구란 형성)

  • Hur, Sung-Bum;Park, Heum-Gi
    • Journal of Aquaculture
    • /
    • v.9 no.3
    • /
    • pp.187-194
    • /
    • 1996
  • Sixteen strains of marine rotifer, Braohionus plicatilis were isolated from salt pond, estuary and lagoon. Among 16 strains, 2 strains were large (L)-type and the others were small (S) or ultra small (US)-type. Four strains of fresh water rotifer, B. calyciflorus were isolated from commercial fish ponds. The size of lorica and resting egg were measured. In B. plicatilis, the range of lorica length from S-type and S-type were $244.3{\~}255.3\;{\mu}m$ and $131.0{\~}165.8\;{\mu}m$, respectively. The major axis of resting egg in the marine rotifer were $93.7\~116.4\;{\mu}m$ for S-type and $142.4{\~}145.5\;{mu}m$ for L-type, respectively. In freshwater rotifer, B. calyciflorus, the size range of lorica and major axis of resting egg were $211.8\~229.9\;{\mu}m$ and $126.8\~140.2\;{mu}m$, respectively. The size of freshwater rotifer was larger than that of S-type marine rotifer, but smaller than that of L-type one. Growth and formation of resting egg of B. plicatilis were different among the strains. The maximum density of S-type and L-type rotifer was 753.3 inds./ml for H-S strain and 220 inds./ml for O-L strain, respectively. The largest production of resting egg of S-type and L-type rotifer were 86.7 inds./ml for YY-S strain and 45.8 inds./ml for O-L strain, respectively.

  • PDF

Biological Characteristics and Growth of the Korean Freshwater Rotifer, Brachionus calyciflorus at Various Temperatures (한국 담수산 윤층 Brachionus calyciflorus의 생물학적 특징과 온도별 성장)

  • 강언종;이배익;김응오
    • Journal of Aquaculture
    • /
    • v.10 no.4
    • /
    • pp.449-456
    • /
    • 1997
  • This study was concuted to determine the optimal conditions for raising the freshwater rotifer, Brachinus calyciflorus. The authors presented some biological informatin obtained from incubation experiment under the various controlled temperatures. Lorica size of the rotifer was divided into two groups : the length and the width for the S-type was $141.0\pm16.7\mu m$($110.1-182.5\;\mu m, n=44$)and $107.0\pm20.3\mu m\;(75.3-152.3\mu m, n=44)$, and those for the L-type was $262.8\pm15.2\mu m\;(234.4-288.6\mu m,\;n=20)\;and\;182.6\pm13.4\mu m (159.8-207.0\mu m,\;n=20$), respectively. The number of eggs being attached on the female varied from 1 to 11 at various culture conditions. Egg type was divided into two groups, large and small. Large and small egg was measured in its major axis as 85a.7-107.8$\mu$m and 55.1-65.2$\mu$m for S-type, and 104.9-121.8 $\mu$m and 62.8-89.1$\mu$m for L-type respectively. The maximum density was reached at 4th day after incubation. The density was 583.9 rotifers/$m\ell$ for $25^{\circ}C$-experimental. group and 421.3 rotifers/$m\ell$ for $22^{\circ}C$-experimental. group respectively. In the case of $28^{\circ}C$-experimental. group, it suddenly decreased into 4.7 rotifers/$m\ell$ at 1st day after incubations and did not recover to its initial density. The maximum rate of increase of populatin per day was reached 0.802 for $22^{\circ}C$-experimental. group at day 2 and fluctuated thereafter. For $25^{\circ}C$-experimental. group it increased to 0.964 at day 3 of incubation and then declined. And the egg ratio of female was reached the maximum of 0.614 for 22$^{\circ}C$- at 3rd day and 0.772 for $25^{\circ}C$-experimental. group at 4th day of incubation.

  • PDF