• Title/Summary/Keyword: rotational effect

검색결과 704건 처리시간 0.031초

Theoretical rotational stiffness of the flexible base connection based on parametric study via the whale optimization algorithm

  • Mahmoud T. Nawar;Ehab B. Matar;Hassan M. Maaly;Ahmed G. Alaaser;Osman Hamdy
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.43-52
    • /
    • 2023
  • This paper handles the results of an extensive parametric study on the rotational stiffness of the flexible base connection using ABAQUS program. The results of the parametric study show the relation between the applied moment and the relative rotation for 96 different base connections. The configurations of the studied connections considered different numbers, diameters, and spacing of the anchor bolts along with different thicknesses of the base plate to investigate the effect of these parameters on the rotational stiffness behavior. The results of the previous parametric research used through the whale optimization algorithm (WOA) to detect different equation formulation of the moment-rotation (M-Ɵr) equation to detect optimum equation simulates the general nonlinear rotational behavior of the flexible base connection considering all variables used in the parametric study. WOA is a relatively new promising algorithm, which is used in different types of optimization problems. For more verification, the classical genetic algorithm (GA) is used to make a comparison with WOA results. The results show that WOA is capable of getting an optimum equation of the M-Ɵr relation, which can be used to simulate the actual rotational stiffness of the flexible base connections. The rotational stiffness at H/150 can be calculated using WOA (1) method and be used as a design aid for engineering design.

A 3D co-rotational beam element for steel and RC framed structures

  • Long, Xu;Tan, Kang Hai;Lee, Chi King
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.587-613
    • /
    • 2013
  • A 3-node 3D co-rotational beam element using vectorial rotational variables is employed to consider the geometric nonlinearity in 3D space. To account for shape versatility and reinforced concrete cross-sections, fibre model has been derived and conducted. Numerical integration over the cross-section is performed, considering both normal and shear stresses. In addition, the derivations associated with material nonlinearity are given in terms of elasto-plastic incremental stress-strain relationship for both steel and concrete. Steel reinforcement is treated as elasto-plastic material with Von Mises yield criterion. Compressive concrete behaviour is described by Modified Kent and Park model, while tensile stiffening effect is taken into account as well. Through several numerical examples, it is shown that the proposed 3D co-rotational beam element with fibre model can be used to simulate steel and reinforced concrete framed structures with satisfactory accuracy and efficiency.

Dynamic analysis of offshore wind turbines

  • Zhang, Jian-Ping;Wang, Ming-Qiang;Gong, Zhen;Shi, Feng-Feng
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.373-380
    • /
    • 2020
  • For large-scale 5MW offshore wind turbines, the discrete equation of fluid domain and the motion equation of structural domain with geometric nonlinearity were built, the three-dimensional modeling of the blade considering fluid-structure interaction (FSI) was achieved by using Unigraphics (UG) and Geometry modules, and the numerical simulation and the analysis of the vibration characteristics for wind turbine structure under rotating effect were carried out based on ANSYS software. The results indicate that the rotating effect has an apparent effect on displacement and Von Mises stress, and the response and the distribution of displacement and Von Mises stress for the blade in direction of wingspan increase nonlinearly with the equal increase of rotational speeds. Compared with the single blade model, the blade vibration period of the whole machine model is much longer. The structural coupling effect reduces the response peak value of the blade displacement and Von Mises stress, and the increase of rotational speed enhances this coupling effect. The maximum displacement difference between two models decreases first and then increases along wingspan direction, the trend is more visible with the equal increase of rotational speed, and the boundary point with zero displacement difference moves towards the blade root. Furthermore, the Von Mises stress difference increases gradually with the increase of rotational speed and decreases nonlinearly from the blade middle to both sides. The results can provide technical reference for the safe operation and optimal design of offshore wind turbines.

선호손과 발에 따른 제자리 회전 후 안정성에 미치는 영향 (Effects on stability of handedness and footedness preference after rotation in place)

  • 박준성;우병훈
    • 한국응용과학기술학회지
    • /
    • 제39권4호
    • /
    • pp.507-516
    • /
    • 2022
  • 본 연구의 목적은 좌우 방향의 회전 후 직립자세 시 압력중심과 근전도 분석을 토대로 회전선호도가 신체 안정성에 미치는 영향을 알아보고자 하였다. 연구의 대상은 오른쪽 손과 발의 편측선호도가 높은 대상자 16명으로 3가지 회전방향 조건(QS: 직립자세, LT: 왼쪽 10바퀴, RT: 오른쪽 10바퀴)을 수행하였다. 회전 후 직립자세 시 안정성을 평가하기 위하여 압력측정판과 근전도를 이용하여 결과를 도출하여 분석하였다. 연구결과로 모든 압력중심 변인은 QS보다 LT, RT가 크게 나타났지만, 회전방향에 따른 차이는 보이지 않았다. 근전도 결과는 좌우 비복근에서 회전방향에 따라 RT가 QS보다 근활성도가 크게 발생되었다. 결론적으로 대상자가 모두 오른쪽 측면선호도가 높았지만 압력중심에서는 회전선호도의 영향이 없었고, 비복근에서는 회전선호도의 영향이 나타났다.

Vibration Suppression Control for a Geared Mechanical System;Simulation Study on Vibration Suppression Effects Using a Model-Based Control with a Rotational Speed Sensor

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.694-699
    • /
    • 2005
  • This paper deals with a control technique of eliminating the transient vibration of a geared mechanical system. This technique is based on a model-based control with a rotational speed sensor in order to establish the damping effect at the driven machine part. A rotational speed sensor is installed in a driven gear, namely a bull gear. A control model is composed of a reduced-order mechanical part expressed as a transfer function between the rotational speed of the motor and that of the bull gear. This control model estimates a load speed after the rotational speed of the bull gear is acted on the transfer function. The difference between the estimated load speed and the motor speed is calculated dynamically and it is added to the velocity command to suppress the transient vibration generated at the load. This control technique is applied to a dies driving spindle of a form rolling machine. In this paper, the performance of this control method is examined by simulations. The settling time of the residual vibration generated at the loading inertia can be shortened down to about 1/2 of the uncompensated vibration level.

  • PDF

Heat Transfer Simulation and Effect of Tool Pin Profile and Rotational Speed on Mechanical Properties of Friction Stir Welded AA5083-O

  • El-Sayed, M.M.;Shash, A.Y.;Abd Rabou, M.
    • Journal of Welding and Joining
    • /
    • 제35권3호
    • /
    • pp.35-43
    • /
    • 2017
  • A 3D transient heat transfer model is developed by ABAQUS software to study the temperature distribution during friction stir welding process at different rotational speeds. Furthermore, AA 5083-O plates were joined by FSW technique. For this purpose, a universal milling machine was used to perform the welding process and a mechanical vice was used to fix the work pieces in the proper position. The joints were friction stir welded at a constant travel speed 50 mm/min and two rotational speed values; 400 rpm and 630 rpm using two types of tools; cylindrical threaded pin and tapered smooth one. At each welding condition the temperature was measured using infra-red thermal image camera to verify the simulated temperature distribution. The welded joints were visually inspected as well as by macro- and microstructure evolutions. In addition, the welded joints were mechanically tested for hardness and tensile strength. The maximum peak temperature obtained was at higher rotational speed using the threaded tool pin profile. The results showed that the rotational speed affects the peak temperature, defects formation and sizes, and the mechanical properties of friction stir welded joints. Moreover, the threaded tool gives superior mechanical properties than the tapered one at lower rotational speed.

하드 디스크 드라이브 회전수 변화가 내부 필터 입자 포집 성능에 미치는 영향 (Effect of HDD Rotational Speed Variation on Filtration of Particles by Recirculation Filter)

  • 이대영;박희성;유용철;황정호
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1069-1076
    • /
    • 2002
  • Contamination particles in a hard disk drive can cause serious problems including slider crash and thermal asperities. A recirculation filter is typically installed in the hard disk drive to remove the particles. Measurements and theoretical predictions of particle concentration decay with the filter are carried out for a commercially available HDD. Especially, the effect of disk rotational speed on the particle capture efficiency is investigated. Results show that filter efficiency is higher for higher disk rotational speed.

B390 알루미늄 합금의 초정Si 입자분포에 미치는 원심주조 공정인자의 영향 (Effect of Centrifugal Casting Parameters on The Distribution of Primary Si Particles of B390 Aluminum Alloy)

  • 박정욱;김헌주
    • 한국주조공학회지
    • /
    • 제28권1호
    • /
    • pp.25-30
    • /
    • 2008
  • To develop a functionally graded microstructure of cylindrical liner, effect of centrifugal casting parameters such as pouring temperature of hyper-eutectic Al-Si alloy melt, mold pre-heating temperature, and rotational frequency of mold on distribution of primary Si particles across wall thickness were investigated. Segregation tendency of Si particles toward inner side of cylindrical liner increased as the increase of rotational frequency of mold, pouring temperature of melt and mold pre-heating temperature. Especially, distribution density of primary Si particles within 1.5 mm from inner surface of cylindrical liner was above 35% under the centrifugal casting condition of $750^{\circ}C$ melt pouring temperature, $300^{\circ}C$ mold pre-heating temperature, and 2500 rpm mold rotational frequency.

볼트수의 변화가 더블앵글 접합부의 회전강성에 미치는 영향 (The Effect of the Variation of the Number of Bolts on the Rotational Stiffnesses of Double Angle Connections)

  • 양재근;김호근;김기환
    • 한국공간구조학회논문집
    • /
    • 제4권1호
    • /
    • pp.69-75
    • /
    • 2004
  • 저층 철골조의 시공에 있어서 더블앵글 접합부는 매우 효과적인 접합부의 한 형태로 취급된다. 더블앵글 접합부의 접합부 강성은 앵글의 두께, 볼트 게이지 거리, 볼트의 개수 등과 같은 여러 변수에 따라서 변화한다. 본 연구에서는 볼트수의 변화가 더블앵글 접합부의 모멘트-회전각 관계에 미치는 영향을 파악하기 위하여 세 개의 더블앵글 접합부 실험이 수행되었다. 각각의 실험결과에 근거하여 각 실험에 사용된 더블앵글의 회전강성은 회귀분석을 통하여 산정되었다. 회귀분석결과 더블앵글 접합부의 접합부 강성은 볼트의 개수가 증가함에 따라서 함께 증가한다는 결론을 얻었다.

  • PDF