• Title/Summary/Keyword: rotational angle differences

Search Result 25, Processing Time 0.022 seconds

Vibration Characteristics of Compaction Table for Expendable Pattern Casting Process through Changing Vibration Modes (소실모형주조용 조형장치의 진동특성 평가)

  • Lee, Kang-Rae;Choe, Kyeong-Hwan;Cho, Gue-Serb;Lee, Kyong-Whoan;Kim, Myung-Ho;Rim, Kyung-Hwa;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.24 no.5
    • /
    • pp.273-280
    • /
    • 2004
  • Vibrational motions of the compaction table were investigated to select the optimal operation conditions of sand filling and compaction for the EPC process. Their modes were measured at the nine points of the table with changing the relative rotation angles between the two eccentric mass vibrators which were attached parallel beneath the table. Well-defined vibration modes were measured at the center of the table but those of left and right sides of the table were distorted regardless of rotational angle differences. The distortion of vibration modes at both sides of the table were caused by the moment generated by offset positions of two eccentric masses. It was found that the uniform vibration modes would be gathered by controlling the relative distances between the rotating axis and the center of gravity in the compaction system at the various conditions of vibration modes and rotational angle differences.

Change in Rotational Motion of the Shoulder and Hip According to the Method Used for a 2-Handed Backhand Stroke in Tennis (테니스 양손 백핸드 스트로크 방법에 따른 어깨와 힙의 회전운동 변화)

  • Kang, Sang-Hack
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • The purpose of this study was to examine differences between players who bend the left elbow and those who stretch it during the forward swing from BST to BC in a 2-handed backhand stroke among outstanding high school tennis players, and to assess the detailed 3D rotational kinematic characteristics of the shoulder and the hip. Statistically significant differences were observed between groups in the longitudinal axis rotation angle of the shoulder and the angle between the shoulder and the arm at BST, and in the side to side movement of the shoulder, the up and down movement of the hip, the side tilt angular velocity of the shoulder, the side tilt angular velocity of the hip, and the front tilt angular velocity of the hip at BC. The difference in the longitudinal axis rotation angle of the shoulder between the 2 groups suggests a difference in the flexibility of the joint in the shoulder arm racquet system. The longitudinal axis rotation angular velocity of the shoulder reached its peak at 75 % of the duration of the analyzed segment and then decreased little by little until BC. This time is considered the stage for increasing the angular velocity of the upper arm, the forearm, the hand and then the racquet, which are more distal segments than the shoulder.

Machining Tolerance of Various Implant Systems and their Components (치과용 임플란트 시스템의 기계적 가공오차에 관한 연구)

  • Kim, Hyeong-Seob;Kwon, Kung-Rock;Han, Jung-Suk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Purpose: Misfit of implant components was very important in terms of prosthodontics. they has been linked to prosthetic complications such as screw loosening and fracture. Although there are many results about rotational freedom or machining tolerance between fixture and abutments, the data about domestic implant systems are lacking. The aim of this in vitro study was to evaluate the rotational freedom of domestic external and internal connection implant systems between their fixtures/anlaogs and abutments comparing imported systems. Materials and Methods: Rotational freedom between abutments and fixtures/analogs was investigated by using digitalized rotational angle measuring device. (1) 1 domestic external connection system(Neobiotec) and 2 imported external connection systems(Nobel Biocare, Anthorgyr), (2) 1 domestic internal connection system(Dentium) and 4 imported external connection systems(Nobel Biocare, Anthorgyr, Straumann, Frident Dentsply), and (3) 1 domestic zirconia external connection abutment(ZirAce) were evaluated. Each group has 3 samples. Mean values for each group were analyzed. Results: The differences relative to rotational freedom between domestic and imported implant systems were observed but domestic external connection implant system showed about 2.67 degrees(in case of fixture) and internal connection system showed about 4.3 degrees(in case of fixture). Domestic zirconia abutment showed less than 3 degrees of rotational freedom in a situation where the abutment was connected to an implant fixture egardless of domestic or imported systems. Conclusion: Newly developed digitalized rotational angle measuring device has high measuring resolution. The rotational freedom of domestic implant systems were similar to imported implant systems.

The Differences in the Ski Carving Turn Motion According to Level of Exper tise (스키 카빙턴 동작 시 기술 수준에 따른 동작의 차이 연구)

  • Eun, Seon-Deok;Hyun, Moo-Sung
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.319-325
    • /
    • 2010
  • The purpose of this research was to investigate the differences in the ski carving turn motion according to level of expertise. The posture and movement of 6 skiers nearby the fall-line was evaluated with a biomechanical approach focusing the rotational mechanics. The slope was at an angle of $9^{\circ}$ and the following variables were measured and calculated: tangential velocity, change of COM height after passing fall-line, width between feet, angle between upper body and thigh, trunk angle, average radius of curvature and average centripetal force. The expert skiers minimized their center of mass height movement and maintained the width of between their feet after the passing the fall-line in comparison with the beginners and intermediate skiers. The experts restrained themselves from pushing their upper body downward after the turn to maximize the centripetal force. The experts in comparison with the beginners and intermediate skiers during the turn didn't have to reduce their radius of curvature to maintain a high centripetal force. It was concluded, that the most important factor affecting the centripetal force, was for the beginners and intermediate skiers, to minimize their movement while using the appropriate amount of edging.

The Effects of Treadmill Gait Training with Flexible Derotator of Femur Orthosis on Postural Alignment of Lower Extremities and Gait in Children with Cerebral Palsy: Single Group Rpeated Measure Design (대퇴골 회전방지보조기를 착용한 트레드밀 보행훈련이 뇌성마비 아동의 하지배열 및 보행에 미치는 영향: 단일그룹 반복측정 연구)

  • Yoo, Hyun-Young;Kim, Suhn-Yeop;Jang, Hyun-Jung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • PURPOSE: The purpose of this study was to investigate the effects of flexible derotator of femur orthosis (FDO) during treadmill gait training on the quadriceps-angle (Q-angle), lateral pelvic tilt, gait speed, and number of steps in children with cerebral palsy. METHODS: Seven children with cerebral palsy who had rotational deformity of the lower extremities participated in this study. We used single group repeated measure design. The procedure consisted of baseline phase, intervention phase, and post-intervention phase. The baseline phase consisted of stretching and strengthening exercise and treadmill gait training without FDO. The treatment phase not only included the same procedures as those for baseline, but also included FDO during treadmill gait training. Postural alignment of the lower extremities was assessed with the Q-angle, and lateral pelvic tilt using the Dartfish software program. A 10-m walk test was used to evaluate gait speed and number of steps. RESULTS: For postural alignment, there was significant differences after the application of FDO (p<.05). For gait ability, there was significant differences in all phases (p<.01). CONCLUSION: These finding suggest that the application of FDO during treadmill gait training had a positive effect on the improvement of postural alignment and gait ability in children with cerebral palsy having rotational deformity.

Power Coefficient and Pressure Distributions on Blade Surfaces of a Wind Turbine with Tiltable Blades by 3D Simulations (날개 틸팅형 풍력발전기의 출력과 날개 표면의 압력분포에 대한 3차원 유동 해석)

  • Jeong, Chang-Do;Bae, Hyunwoo;Sung, Jaeyong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In this study, a new shape of wind turbine with horizontal axis has been proposed. The proposed wind turbine has two pairs of 3 tiltable blades which minimizes air resistance during the reverse rotational direction. Under a given wind speed, 3D numerical simulations on tiltable blades were performed for various TSRs(tip-speed-ratios). Four cases of rotational position was considered to analyze the torque and wind power generated on the blade surfaces. The results show that the maximum wind power occurs at the TSR of 0.2. Due to the blade tilting, the wind passes through the blade without air resistance at the reverse rotational direction. The torque is mainly caused by pressure differences between the front and rear surface of the blade, and it becomes maximum when the blade is located at the azimuth angle of 330°.

Effects of grooved abutment on stability of implant abutment screw (Grooved abutment가 임플란트 지대주 연결나사의 안정성에 미치는 영향)

  • Sim, Il-Gwang;Yang, Seung-Won;Shim, June-Sung;Kim, Jee-Hwan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.4
    • /
    • pp.387-392
    • /
    • 2016
  • Purpose: The aim of this study was to investigate the effects of grooved abutments on abutment screw loosening. Materials and methods: This study was conducted to evaluate the abutment screw loosening after 6 months for 50 patients (51 implants) treated at the department of Prosthodontics in Yonsei University Dental Hospital from March, 2015 to July, 2015. A control group with non-grooved abutment consists of 30 implants, and an experimental group with grooved abutment consists of 21 implants. Astra, Straumann, Implantium, Osstem system were used in the study. The abutments with loose screws cases after a period of 6 months has been investigated, with two kinds of measurements: 1) measuring the additional rotational angle on abutment during placement with the same force, 2) measuring the PTV on bucco-cervical area of implant crown. All data collected has been analyzed by normality test followed by Mann-Whitney test using SPSS program. Results: No complications were reported after 6 months for the 51 implants. Abutment screw loose and crown fracture have not been seen in the study groups. The data collected from the two measurements showed no significant differences between the two groups with P-value 0.576 (average= control group: $7.35^{\circ}$, experimental group: $4.75^{\circ}$) for the additional rotational angle measurement and with P-value 0.767 for PTV. Conclusion: There are no significant differences between the grooved and non-grooved abutment in screw stability. However, further studies with long-term followups and larger group of patients is needed in order to investigate the effects of grooved abutment on screw stability.

SCARA robot calibration on off-line programming (오프라인 프로그래밍에서 스카라 로봇의 보정)

  • Jung, Sung-Woo;Son, Kwon;Lee, Min-Chul;Choi, Jae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1832-1835
    • /
    • 1997
  • Off-line programming systems are widely spread in assembly lines of minute electronic products to huge offshore structures. Any OLP system has to be calibrated before the on-line robot tasks are performed because there are inherent differences between the CAD model on OLP and the real robot workspace. This paper uses simple geometric expressions to propose a calibration method applicable to an OLP for SCARA robots. A positioning task on the two-dimensional horizontal surface was used in the error analysis of a SCARA robot and the anaysis shows that the inaccuracy results from the two error sources non-zero offset angles of two rotational joints at the zero return and differences in link lengths. Pen marks on a sheet of plotting paper are used to determine the accurate data on the joint centers and link dimensions. The calculated offset angles and link lengths are fed back to the OLP for the calibration of the CAD model of the robot and task environments.

  • PDF

Cone-beam computed tomography based evaluation of rotational patterns of dentofacial structures in skeletal Class III deformity with mandibular asymmetry

  • Ryu, Hyeong-Seok;An, Ki-Yong;Kang, Kyung-Hwa
    • The korean journal of orthodontics
    • /
    • v.45 no.4
    • /
    • pp.153-163
    • /
    • 2015
  • Objective: The purpose of this study was to assess rotational patterns of dentofacial structures according to different vertical skeletal patterns by cone-beam computed tomography (CBCT) and analyze their influence on menton deviation in skeletal Class III deformity with mandibular asymmetry. Methods: The control group consisted of 30 young adults (15 men, 15 women) without any severe skeletal deformity. The asymmetry group included 55 adults (28 men, 27 women) with skeletal Class III deformity and at least 3-mm menton deviation from the midsagittal plane; it was divided into the hyperdivergent and hypodivergent subgroups using a mandibular plane angle cutoff of $35^{\circ}$. Fourteen rotational variables of the dental arches and mandible were measured and compared among the groups. Correlations between menton deviation and the other variables were evaluated. Results: The asymmetry group showed significantly larger measurements of roll and yaw in the mandible than the control group. The hypodivergent subgroup showed significant differences in maxillary posterior measurements of yaw (p < 0.01) and maxillary anterior shift (p < 0.05) compared with the hyperdivergent subgroup. All the mandibular measurements had significant correlations with menton deviation (p < 0.01). Most measurements of roll were positively correlated with one another (p < 0.01). Measurements of yaw and roll in the posterior regions were also positively correlated (p < 0.05). Conclusions: Menton deviation in skeletal Class III deformity with mandibular asymmetry is influenced by rotation of mandibular posterior dentofacial structures. The rotational patterns vary slightly according to the vertical skeletal pattern.

Tricortical-allobone Grafting in Screw Fixation for Intra-articular Calcaneal Fracture via Ollier Approach (관절 내 종골 골절에서 Ollier 접근법을 이용한 나사못 고정술 시 삼면 피질골 이식)

  • Bang, Taejung;Bae, Su-Young;Woo, Seung Hun;Chung, Hyung-Jin
    • Journal of Korean Foot and Ankle Society
    • /
    • v.21 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • Purpose: Bone grafting is often necessary to maintain a reduction and prevent delayed collapse of reduced fracture in a treatment of severely displaced comminuted intra-articular calcaneal fractures. Herein, we analyzed the usefulness and necessary conditions to perform tricortical-allobone grafting in open reduction of calcaneal fracture via the Ollier approach. Materials and Methods: We performed a retrospective review of 57 intra-articular calcaneal fractures that underwent an operation via the Ollier approach between April 2009 and April 2015. They were divided into two groups: Group 1 (n=17) included those with tricortical-allobone grafts underneath the posterior facet fragment, and group 2 (n=40) included cases without a bone graft. We measured the $B{\ddot{o}}hler$ angle, Gissane angle, height, and width of the calcaneus at preoperative, postoperative, and final follow-up radiograph. We measured the sagittal rotational angle of the posterior facet fragment of preoperative computed tomography to analyze the effect and necessary conditions for bone grafting. We also reviewed the clinical results by the American Orthopaedic Foot and Ankle Society (AOFAS) scale, visual analogue scale (VAS), and any complications. Results: According to the Sanders classification, there were 3 type-II fractures, 12 type-III fractures, and 2 type-IV fractures in Group 1; whereas in Group 2, there were 26 type-II fractures, 13 type-III fractures, and 1 type-IV fracture (p=0.002). Regarding the preoperative radiologic parameters, there were significant differences in the $B{\ddot{o}}hler$ angle (p=0.006), Gissane angle (p=0.043), and rotational angle of the posterior facet fragment (p=0.001). No significant difference was observed in the preoperative calcaneal height and width, as well as postoperative radiologic parameters. There was no significant clinical difference between the two groups (p=0.546). Conclusion: We suggest that a tricortical-allobone graft may be useful in open reduction and screw fixation via the Ollier approach for displaced intra-articular calcaneal fracture with a bony defect after reduction of collapsed posterior facet fragment. This graft can contribute to the stable reduction via a small approach, even without a plate.