• Title/Summary/Keyword: rotational

Search Result 3,863, Processing Time 0.042 seconds

An Experimental Study of the Micro Turbojet Engine Fuel Injection System

  • Choi, Hyun-Kyung;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.1-5
    • /
    • 2008
  • An experimental study was performed to develop the rotational fuel injection system of the micro turbojet engine. In this system, fuel is sprayed by centrifugal forces of engine shaft. The test rig was designed and manufactured to get droplet information on combustion space. This experimental apparatus consist of a high speed rotational device(Air-Spindle), fuel feeder, rotational fuel injector and acrylic case. To understand spray characteristics, spray droplet size, velocity and distribution were measured by PDPA (Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, the length of liquid column from injection orifice is controlled by the rotational speeds and Sauter Mean Diameter(SMD) is decreased with rotational speed. Also, Sauter Mean Diameter is increased as increasing mass flow rate at same rotational speeds.

  • PDF

Improved seismic performance of steel moment frames using rotational friction dampers

  • Ali Banazadeh;Ahmad Maleki;Mohammad Ali Lotfollahi Yaghin
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.223-234
    • /
    • 2023
  • The use of displacement-dependent rotational friction dampers (RFD) as fuses or interchangeable elements in the moment-resisting frames (MRF) is one of the newest methods for improving seismic performance. In the present study, the performance of rotational friction dampers in MRF has been investigated. Evaluation of MRF with and without RFD models was performed using the finite element method by ABAQUS. For validation, an MRF and MRF with rotational friction dampers were modeled that had been experimentally tested and reported in previous experimental research and a good agreement was observed. The behavior of these dampers in frames of 3-, 6-, and 9-story was studied by modeling the damper directly. Nonlinear time history dynamic analysis was used. It was observed that by increasing the number of stories in the buildings, rotational friction dampers should be used to perform properly against earthquakes. The installation of rotational friction dampers in steel moment-resisting frames shows that the drift ratio between the floors is reduced and the seismic performance of these frames is improved.

Rotational Contour Analysis of the Vibronic Bands in the High Resolution Emission Spectra of the Benzyl Radical

  • 최익순;한명선;이상국
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.10
    • /
    • pp.882-885
    • /
    • 1996
  • The 6a10 and 6b10 vibronic bands in the 12A2-12B2 electronic transition of the emission spectra of the benzyl radical obtained using a high resolution Fourier transform spectrometer are rotationally analyzed. The observed rotational contours were fitted by computer simulated rotational contours, providing determination of the variations, ΔA, ΔB, and ΔC of the rotational constants accompanying the vibronic transitions corresponding to each band. The molecular rotational constants A, B, and C are revised for the upper state and for the two lower states, respectively.

Machining Tolerance of Various Implant Systems and their Components (치과용 임플란트 시스템의 기계적 가공오차에 관한 연구)

  • Kim, Hyeong-Seob;Kwon, Kung-Rock;Han, Jung-Suk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Purpose: Misfit of implant components was very important in terms of prosthodontics. they has been linked to prosthetic complications such as screw loosening and fracture. Although there are many results about rotational freedom or machining tolerance between fixture and abutments, the data about domestic implant systems are lacking. The aim of this in vitro study was to evaluate the rotational freedom of domestic external and internal connection implant systems between their fixtures/anlaogs and abutments comparing imported systems. Materials and Methods: Rotational freedom between abutments and fixtures/analogs was investigated by using digitalized rotational angle measuring device. (1) 1 domestic external connection system(Neobiotec) and 2 imported external connection systems(Nobel Biocare, Anthorgyr), (2) 1 domestic internal connection system(Dentium) and 4 imported external connection systems(Nobel Biocare, Anthorgyr, Straumann, Frident Dentsply), and (3) 1 domestic zirconia external connection abutment(ZirAce) were evaluated. Each group has 3 samples. Mean values for each group were analyzed. Results: The differences relative to rotational freedom between domestic and imported implant systems were observed but domestic external connection implant system showed about 2.67 degrees(in case of fixture) and internal connection system showed about 4.3 degrees(in case of fixture). Domestic zirconia abutment showed less than 3 degrees of rotational freedom in a situation where the abutment was connected to an implant fixture egardless of domestic or imported systems. Conclusion: Newly developed digitalized rotational angle measuring device has high measuring resolution. The rotational freedom of domestic implant systems were similar to imported implant systems.

Rotational Friction of Different Soccer Stud (축구화 스터드의 형태변화에 따른 회전마찰력)

  • Lee, Joong-Sook;Park, Sang-Kyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.121-138
    • /
    • 2004
  • The design of soccer studs is important for providing friction on a variety of surfaces. We hypothesized that a certain type of soccer studs could improve performance due to high rotational friction. Thus, this study was conducted to determine the relationship between the frictional characteristics and different soccer stud design. Twelve recreational soccer players were recruited. Rotational friction data from the force plate was collected for all subjects during normal walking with 180 degree rotation. Walking speed was controlled at 1.2m/s (${\pm}\;0.1\;m/s$) with timing lights on infilled artificial turf. Three different types of soccer studs and one running shoe were tested. Repeated measures ANOVA was used to determine significance. Significant differences were found in rotational friction with four different shoes. Trx and World studs tended to have greater maximum rotational friction than the running shoe (Nova) and traditional soccer shoe(Copa Mondial). The results were as follow : world(25.95Nm) > trx(25.74Nm) > copa(22.50Nm) > nova(16.36Nm). The difference may be due to the number, location, size, and shape of studs. We concluded that stud design influences rotational friction between the shoe and surface during movement. Based on studs design and contact area, Trx with blade type studs are recommended since it showed high rotational friction for performance as well as enough contact area for stability. However, differences due to the mechanical properties of soccer studs are still being investigated.

Development of a Inchworm-Type Precise Rotational Motor (자벌레형 정밀 회전 모터의 개발)

  • 김상채;김수현;곽윤근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.458-461
    • /
    • 1995
  • A new type of rotational motor which is developed has a resolution smaller than 10 $^{-4}$ radian and can be accessed for full rotational angles. The operation principle of the motor is based on inchworm motion of two belt driving mechanism. Flexure hinge mechanism, which is pertinent to symmetry construction of the motor, is designed to minimze the effort to frame and is analyzed by using finite element method. Depending on input signal amplitude, rotational angle by one cycle is varied form 0.2*10 $^{-4}$ rad to 9.76* $^{-4}$ rad. This shows that it has the capability of getting very small rotational angle by considering radius of rotor and amplitude of input signal.

  • PDF

Rovibrational Nonequilibrium of Nitrogen Behind a Strong Normal Shock Wave

  • Kim, Jae Gang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.28-37
    • /
    • 2017
  • Recent modeling of thermal nonequilibrium processes in simple molecules like hydrogen and nitrogen has indicated that rotational nonequilibrium becomes as important as vibrational nonequilibrium at high temperatures. In the present work, in order to analyze rovibrational nonequilibrium, the rotational mode is separated from the translational-rotational mode that is usually considered as an equilibrium mode in two- and multi-temperature models. Then, the translational, rotational, and electron-electronic-vibrational modes are considered separately in describing the thermochemical nonequilibrium of nitrogen behind a strong normal shock wave. The energy transfer for each energy mode is described by recently evaluated relaxation time parameters including the rotational-to-vibrational energy transfer. One-dimensional post-normal shock flow equations are constructed with these thermochemical models, and post-normal shock flow calculations are performed for the conditions of existing shock-tube experiments. In comparisons with the experimental measurements, it is shown that the present thermochemical model is able to describe the rotational and electron-electronic-vibrational relaxation processes of nitrogen behind a strong shock wave.

Effect on characteristics of thrust force of LIM by Rotational type tester (회전기 타입의 시험기가 LIM의 추력 특성에 미치는 영향)

  • Ham, Sang-Hwan;Won, Sung-Hong;Lee, Sung-Gu;Cho, Su-Yeon;Kim, Yoon-Sung;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.643-644
    • /
    • 2008
  • This paper is analyzed the effect on characteristics of thrust force of linear induction motor(LIM) by rotational type tester. Many kinds of tester have a rotational shape because of a finite length of railroad. Whereas effects by using rotational type tester are generally unknown. For reason of that, this paper will be analyzed the effect on characteristics by rotational type tester using 2D finite element method(FEM), and then will be compared a thrust force between linear type tester and rotational type tester.

  • PDF

Improvement of Rotational Molding Products (회전성형 제품의 성능 개선)

  • Lee, Hyeong-Min;Kim, Hyun-Joo;Lee, Jung-Ki
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1834-1839
    • /
    • 2003
  • Temperature and velocity distributions of hot air flows in rotational molding machines with two different shapes and structures of oven and inlet were investigated by using FLUENT, a commercial computational fluid dynamics code. The shape and structure of oven and inlet in current rotational molding machine were improved. Two different sizes of mold inside each oven were considered in the analysis. Temperature and velocity distributions of hot air flows in two different rotational molding machines were compared to each other. In order to reduce cycle time and improve product quality in current rotational molding machine, the improved shape and structure of oven and inlet were proposed.

  • PDF

The Organization of Rotational Accuracy Measurement System of NC Lathe Spindle (NC 선반 주축의 회전정도 측정 시스템의 구성)

  • Kim, Young-Seuk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.21-26
    • /
    • 2005
  • It is important to measure the rotational accuracy of NC lathe spindle as it affects to the qualities of all machines machined by the NC lathe using in industries. The bad rotational accuracy of NC lathe spindle are caused mainly by wearness of the spindle in using and quality of spindle when machining and using low level bearings. It occurs especially in case of NC lathes because the cutting force acting to work-piece act on one side to the spindle not to both sides symmetrically. Therefore in this study, constructing experimental appratus for measuring of rotational accuracy by using eddy current type gap sensors, converters, screw terminal, data acquisition board inserted in computer and software f3r data acquisition, DT VEE ver. 5.0 and then error data acquired in the rotational accuracy test of NC lathe spindle are analysed in plots and statistical treatments.