• Title/Summary/Keyword: rotation speed

Search Result 1,155, Processing Time 0.03 seconds

An Analytic Study on the Valve Rotation Behavior of an Internal Combustion Engine (내연기관 밸브회전 거동에 관한 해석적 연구)

  • Kim, Do-Joong;Youn, Jae-Won;Kim, Jin-Woung;Song, Jin-Ook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.184-193
    • /
    • 2006
  • Rotation of intake and exhaust valves are very closely related to the long term durability of automotive engines. If the valves do not rotate even at a rated engine speed, it causes the uneven wear of the valve seat and valve head contact area, which eventually shortens the engine life. A principle of valve rotation mechanism was presumed based on some findings from experiments, and computer programs were developed to simulate the valve rotation phenomena. In this study we investigated the valve rotation mechanism by using the computer simulation models.

An anti-aliasing two-pass image rotation (Aliasing 감소를 위한 two-pass 영상회전변환)

  • 정덕진;이택주
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.98-105
    • /
    • 1997
  • Image transformation ahs been widely used in compuater graphics, computer vision, robot vision, and image processing. Image rotation is one of important part of image transformation. In image rotation, a two-pass algorithm has many advantages over a one-pass algorithm in high speed computation. This paper presents a new two-pass algorithm that overcomes the limitations of previously reported effect of interpolation. A brief comparison of existent techniques and the twp-pass algorithm newly suggeste is presented. This paper also present the hardware structure for the two-pass algorithm suggested.

  • PDF

Investigation of Nanopore Shape Formed on an Aluminum Roll Mold with Various Anodizing Conditions (다양한 양극산화 공정조건에 따른 롤 금형 표면에 형성되는 나노포어 형상에 대한 연구)

  • Ryu, In Gon;Han, Eui Don;Kim, Byeong Hee;Seo, Young Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.166-171
    • /
    • 2017
  • This study analyzes the effect of anodizing conditions on nanopore formation on a cylindrical aluminum roll. In general, a nanopore is formed at the center of a concave base-pattern. Occasionally, multiple nanopores are formed on a single base-pattern. However, to control the diameter and interpore distance precisely, single nanopores are required. In this study, the ratio of the number of single nanopores to the total number of nanopores was investigated by varying anodizing conditions such as electrode area, electrolyte concentration, and rotation speed of the roll mold. The areal ratio of the counter-electrode to the working electrode (aluminum), electrolyte concentration, and the roll-mold rotation speed were varied from 0.4% to 42%, 0.07 M to 0.3 M, and 5 rpm to 75 rpm, respectively. The experimental results showed that the single-nanopore ratio increased with increasing counter-electrode area and electrolyte concentration. However, the rotation speed had no significant effect on nanopore shape.

Tacho Pulse Non-uniformity Effects on Pulse Count Method (타코펄스 불균일성으로 인한 펄스개수측정방법 영향성)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.301-309
    • /
    • 2021
  • Pulse count method is the classical reaction wheel speed detection method. In this study, we represent the pulse count method as mathematical equations. Instead of rotation speed, we model the reaction wheel rotation through rotation angle during sampling periods. We verified the effectiveness of the proposed model by comparing the pulse counts variation and averaging method effects from the model and previous research results. Then, we add tacho pulse non-uniformity to this verified model, and examine the errors of pulse count method. We express the measurement error increasement due to non-uniformity as mathematical equations, and also shows the requirement of moving average numbers to offset the measurement errors.

An Experimental Investigation of Noise Reduction by Blades in a Duct (회전 날개에 의한 덕트 소음 저감에 관한 실험적 고찰)

  • 최성배;이재곤
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.357-363
    • /
    • 2003
  • There have been lots of studies on noise transmission analysis and noise reduction In ducts. In order to reduce the noise transmission in ducts. active noise cancellation techniques have often been employed and a rotation shaft with blades has sometimes been suggested. These Ideas were not successfully commercialized because of the limitation of real life such as size or application difficulties. This study investigated how a rotational shaft with blades could reduce the noise transmission in a duct. To do so, an assembly of the shaft and the $haft housing was built In the middle of a duct. and the clearance between the blades and the housing was 0.2 mm. The noise reduction was experimentally evaluated with respect to the number of blades. the rotation speed, and the rotation or stop. This paper showed that the noise reduction resulted in about 14∼19 dBA regardless of the three test conditions only If the blades always blocked the duct. And. the noise reduction increased due to the higher number of blades and the lower speed of the shaft.

Development of Normal-Opposite Rotational Durability Test Equipment for Large Sized Planetary Gear Box (대형 유성기어박스의 정역회전 내구성시험장치 개발에 관한 연구)

  • Lee, Yong-Bum;Kim, Kwang-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.305-310
    • /
    • 2012
  • Planetary gear box is a power transmitter having very high gear ratio in compact volume. The planetary step-down gear box converts high speed and low torque into low speed and high torque, which is widely used in constructional and industrial machinery field. And, the planetary step-up gear box does vice versa working, which is used as main gear box of large sized wind mill system. The large sized planetary gear box must be performed the normal-opposite rotation test as a its durability test for achieving the reliability. The large sized planetary gear box is composed by triple gear trains of sun gear, carrier, and ring gear. If input power is supplied into one of them and the other is fixed, and then another becomes the output part. In this paper, we designed a new test equipment which can do rapid normal and opposite rotational change with only small displacement by supplying test power using the above rotation (driving) characteristics and hydraulic cylinder and link, and also compared and analyzed with existing method through various experiments.

Detailed Heat Transfer Characteristics on Rotating Turbine Blade (회전하는 터빈 블레이드에서의 열전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1074-1083
    • /
    • 2006
  • In the present study, the effect of blade rotation on blade heat transfer is investigated by comparing with the heat transfer results for the stationary blade. The experiments are conducted in a low speed annular cascade with a single stage turbine and the turbine stage is composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has a flat tip and the mean tip clearance is 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. For the experiments, the inlet Reynolds number is $Re_c=1.5{\times}10^5$, which results in the blade rotation speed of 255.8 rpm. Blade rotation induces a relative motion between the blade and the shroud as well as a periodic variation of incoming flow. Therefore, different heat/mass transfer patterns are observed on the rotating blade, especially near the tip and on the tip. The relative motion reduces the tip leakage flow through the tip gap, which results in the reduction of the tip heat transfer. However, the effect of the tip leakage flow on the blade surface is increased because the tip leakage vortex is formed closer to the surface than the stationary case. The overall heat/mass transfer on the shroud is not affected much by the blade rotation.

Flow of non-Newtonian fluid in a concentric annulus with rotation (환형관내 비뉴튼유체의 회전유동에 관한 연구)

  • Kim, Young-Ju;Woo, Nam-Sub;Seo, Byung-Taek;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2095-2100
    • /
    • 2003
  • This Experimental study concerns the characteristics of vortex flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one is rotating. Pressure losses and skin-friction coefficients have been measured for fully developed flow of bentonite-water solution(5%) when the inner cylinder rotates at the speed $0{\sim}400rpm$. The results of present study reveal the relation of the bulk flow Reynolds number Re and Rossby number $R_o$ With respect to the skin friction coefficients. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. In all flow regime, the skin friction coefficient is increased by the inner cylinder rotation. The critical (bulk flow) Reynolds number $Re_c$ decreases as the rotational speed increases. Thus, the rotation of the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.

  • PDF

A Correlation between Axis-Rotation and Corneal Astigmatism in Toric Soft Contact Lens Fitting (토릭소프트렌즈 피팅 시 축 회전과 각막난시와의 상관관계)

  • Park, Hyung Min;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.2
    • /
    • pp.189-198
    • /
    • 2014
  • Purpose: The present has analyzed the correlation between the direction of lens and the amount of rotation upon soft toric contact lens fitting after classifying the corneal astigmatism. Methods: Soft toric contact lens was fitted on 114 with-the-rule astigmatic eyes with total astigmatism of at least -0.75 D in their 20s and 30s according to the fitting guideline of the manufacturer and the correlation between the astigmatic degree and the rotational direction/amount of rotation was analyzed by when keeping the eyes on the front and by changing the direction of gaze. As for re-orientation movement. The speed of lens re-orientation and total amount of lens rotation was compared and analyzed by corneal astigmatism after mis-location of lens of $45^{\circ}$ to temporal and nasal direction, respectively. Results: The positive correlations were shown between corneal astigmatism and the direction of lens rotation and between corneal astigmatism and the amount of lens rotation. Meanwhile, the amount of lens rotation was different by the direction of gaze however, there was no correlation with corneal astigmatism. The speed of lens re-orientation was fastest in the group of high astigmatic degree when the lens was mis-located to both temporal and nasal directions. Conclusions: For optimal axis stabilization of toric soft lens, it is proposed that the adjustment of fitting guideline considering corneal astigmatism is necessary since the current fitting guideline is only based on total astigmatism.

The Study on the Composition of the Encoder for Driving the High Speed Spindle Motor (고속 스핀들 전동기 구동을 위한 자기식 엔코더 구성에 관한 연구)

  • Choi Cheol;Kim Cheol-U;Lee Sang-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.5
    • /
    • pp.253-259
    • /
    • 2005
  • Magnetic encoder with relatively low pulse per rotation is generally used for detecting speed of the high-speed rotating machine. It is due to the fact of the mechanical problems of vibration and bearing stiffness and also the limit of maximum output pulse of the mounted encoder. The magnetic encoder is divided into two types, that is, toothed gear-wheel method and magnetic wheel method according to the shape of the rotation disk. In case of detecting speed by the tooth gear-wheel, the encoder itself can be acted as the additional inertia where the number of tooth determining the output pulse and the width of the wheel detecting the change of the magnetic flux density are relatively enough large considering the volume of the rotating machine. While the magnetic wheel method has the limit of the magnetizing number of the ring magnet, there is relatively few, if nv, the influence of inertia on the machine. In this paper, it is proposed a simple magnetic wheel encoder suited for the high speed rotating machine and the method of signal processing and the output characteristics are examined through the V/F operation of max 48,000(rpm) and 2.4(KW) spindle motor.