• Title/Summary/Keyword: rotation number

Search Result 723, Processing Time 0.025 seconds

Usefulness of Simple Rod Rotation to Correct Curve of Adolescent Idiopathic Scoliosis

  • Kim, Ji Yong;Song, Kyungchul;Kim, Kyung Hyun;Rim, Dae Cheol;Yoon, Seung Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.6
    • /
    • pp.534-538
    • /
    • 2015
  • Objective : To correct apical vertebral rotation for adolescent idiopathic scoliosis (AIS), direct vertebral derotation (DVD) or simple rod rotation (SRR) might be considered. The aim of the present study is to introduce the surgical experiences of AIS by a Korean neurosurgeon and to evaluate the effectiveness of SRR for apical vertebral rotation. Methods : A total of 9 patients (1 male and 8 females) underwent scoliosis surgery by a neurosurgeon of our hospital. The Lenke classifications of the patients were 1 of 1B, 2 of 1C, 1 of 2A, 1 of 2C, 3 of 5C and 1 of 6C. Surgery was done by manner of simple rod rotation on the concave side and in situ coronal bending. Coronal Cobb's angles, vertebral rotation angles and SRS-22 were measured on a plain standing X-ray and CT before and after surgery. Results : The mean follow up period was 25.7 months (range : 5-52). The mean number of screw positioning level was nine (6-12). The mean age was 16.4 years (range : 13-25) at surgery. The mean Risser grade was $3.7{\pm}0.9$. The apical vertebral rotation measured from the CT scans was $25.8{\pm}8.5^{\circ}$ vs. $9.3{\pm}6.7^{\circ}$ (p<0.001) and the Coronal Cobb's angle was $53.7{\pm}10.4^{\circ}$ vs. $15.4{\pm}6.5^{\circ}$ (p<0.001) preoperatively and postoperative, respectively. The SRS-22 improved from 71.9 preoperatively to 90.3 postoperatively. There were no complications related with the operations. Conclusion : SRR with pedicle screw instrumentation could be corrected successfully by axial rotation without complications. SRR might serve as a good option to correct AIS deformed curves of AIS.

Efficient Rotation-Invariant Boundary Image Matching Using the Envelope-based Lower Bound (엔빌로프 기반 하한을 사용한 효율적인 회전-불변 윤곽선 이미지 매칭)

  • Kim, Sang-Pil;Moon, Yang-Sae;Hong, Sun-Kyong
    • The KIPS Transactions:PartD
    • /
    • v.18D no.1
    • /
    • pp.9-22
    • /
    • 2011
  • In this paper we present an efficient solution to rotation?invariant boundary image matching. Computing the rotation-invariant distance between image time-series is a time-consuming process since it requires a lot of Euclidean distance computations for all possible rotations. In this paper we propose a novel solution that significantly reduces the number of distance computations using the envelope-based lower bound. To this end, we first present how to construct a single envelope from a query sequence and how to obtain a lower bound of the rotation-invariant distance using the envelope. We then show that the single envelope-based lower bound can reduce a number of distance computations. This approach, however, may cause bad performance since it may incur a larger lower bound by considering all possible rotated sequences in a single envelope. To solve this problem, we present a concept of rotation interval, and using the rotation interval we generalize the envelope-based lower bound by exploiting multiple envelopes rather than a single envelope. We also propose equi-width and envelope minimization divisions as the method of determining rotation intervals in the multiple envelope approach. Experimental results show that our envelope-based solutions outperform existing solutions by one or two orders of magnitude.

Perforator-Based Fasciocutaneous Island Rotation Flap in Treatment of Pressure sore (천공분지에 기저를 둔 도서형 회전 근막 피부 피판을 이용한 압박궤양의 치료)

  • Kim, Ji-Su;Kim, Dong-Hoon;Lee, Dong-Lark;Lim, Jun-Kyu
    • Archives of Reconstructive Microsurgery
    • /
    • v.16 no.1
    • /
    • pp.23-29
    • /
    • 2007
  • The reconstruction of deep soft tissue defect such as pressure sore has difficult problems. Myocutaneous flaps have been used commonly as the best coverage method for pressure sore. But, they have several drawbacks such as sacrifice of functional muscle, high morbidity of the donor sites and bulkiness at the recipient site. The concepts of perforator flap has recently developed and widely used to overcome these disadvantages. Between March 2005 to July 2006, we have treated 9 patients who had pressure sore using perforator based fasciocutaneous island rotation flap. Preoperative unidirectional Doppler was used in all cases. Mean number of perforator vessels was 3.8 and flap sizes were from $7{\times}5\;cm$ to $14{\times}13\;cm$. Rotation angles of flap were from 90 degree to 180 degree. In all cases, donor sites were closed primarily. All flap survived completely and postoperative complications were wound dehiscence in 1 case, wound infection in 3 cases. The mean postoperative follow up period was 15.7 months and recurrence was not reported. We could decrease donor site morbidity and cover wound sites easily by using flap rotation and get robust blood supply without sacrifice of functional muscle. Fasciocutaneous perforator island rotation flap would be very useful for various pressure sore treatment.

  • PDF

Improved bracing systems to prevent exterior girder rotation during bridge construction

  • Ashiquzzaman, Md;Ibrahim, Ahmed;Lindquist, Will;Hindi, Riyadh
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.325-336
    • /
    • 2019
  • Concrete placement and temporary formwork of bridge deck overhangs result in unbalanced eccentric loads that cause exterior girders to rotate during construction. These construction loads affect the global and local stability of the girders and produce permanent girder rotation after construction. In addition to construction loads, the skew angle of the bridge also contributes to girder rotation. To prevent rotation (in both skewed and non-skewed bridges), a number of techniques have been suggested to temporarily brace the girders using transverse tie bars connecting the top flanges and embedded in the deck, temporary horizontal and diagonal steel pipes placed between the webs of the exterior and first interior girders, and permanent cross frames. This study includes a rigorous three-dimensional finite element analysis to evaluate the effectiveness of several bracing systems for non-skewed and several skewed bridges. In this paper, skew angles of $0^{\circ}$, $20^{\circ}$, $30^{\circ}$, and $45^{\circ}$ were considered for single- and three-span bridges. The results showed that permanent cross frames worked well for all bridges, whereas temporary measures have limited application depending on the skew angle of the bridge.

Heat/Mass Transfer Characteristics for Variation of Injection Hole in Rotating Impingement/Effusion Cooling System (회전하는 충돌제트/유출냉각기법에서 분사홀 변화에 따른 열/물질전달 특성)

  • Hong, Sung-Kook;Cho, Hyung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.25-32
    • /
    • 2007
  • The present paper deals with the heat/mass transfer characteristics for the rotating impingement/effusion cooling system. By changing the size and number of injection hole, its effects on heat/mass transfer are investigated and three different injection hole cases are considered such as LH, DH and SH, respectively. Reynolds number based on the effusion hole diameter is fixed to 3,330 and two jet orientations are considered. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. The LH case shows that the local heat/mass transfer is significantly varied by the rotation. Moreover, the low and non-uniform Sh distributions occur because the impinging jet is deflected by Coriolis force. Meanwhile, for DH and SH cases, the local heat/mass transfer coefficients are enhanced significantly compared to LH case and the rotation effect decreases with increasing the jet velocity. The averaged Sh value of DH and SH case rises up to 45%, 85% than that of LH case. However, the uniformity of heat/mass transfer deteriorates due to the steep variation of heat/mass transfer.

Heat Transfer Characteristics in a Leading Edge Cooling Channel of a Turbine Blade with Various Rib Arrangements (터빈 기익 선단부에 설치된 냉각유로에서의 요철 배열에 따른 열전달 특성)

  • Lee, Dong-Hyun;Kim, Kyung-Min;Rhee, Dong-Ho;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.459-466
    • /
    • 2005
  • The present study investigates the heat transfer characteristics of a triangular channel. Three different rib configurations are tested. The ribs are installed on two sides of the channel. The rib height (e) to channel hydraulic diameter is 0.079 and the rib-to-rib pitch (p) is 8 times of the rib height. The rotation number ranges from 0.0 to 0.1 while the Reynolds number is fixed at 10,000. The copper blocks with heaters are installed on the channel walls to measure the regionally averaged heat transfer coefficients. For the stationary $45^{\circ}$ and $135^{\circ}$ ribbed channels, a pair of counter rotating vortices is induced by the angled rib arrangements, and high heat transfer coefficients are obtained on the regions near the inner wall for the $45^{\circ}$ ribbed channel and near the leading edge for the $90^{\circ}$ ribbed channel. The heat transfer coefficients of angled ribbed channels are changed little with rotation, whereas those of the transverse ribbed channel are changed significantly with rotation.

  • PDF

Investigation of Nanopore Shape Formed on an Aluminum Roll Mold with Various Anodizing Conditions (다양한 양극산화 공정조건에 따른 롤 금형 표면에 형성되는 나노포어 형상에 대한 연구)

  • Ryu, In Gon;Han, Eui Don;Kim, Byeong Hee;Seo, Young Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.166-171
    • /
    • 2017
  • This study analyzes the effect of anodizing conditions on nanopore formation on a cylindrical aluminum roll. In general, a nanopore is formed at the center of a concave base-pattern. Occasionally, multiple nanopores are formed on a single base-pattern. However, to control the diameter and interpore distance precisely, single nanopores are required. In this study, the ratio of the number of single nanopores to the total number of nanopores was investigated by varying anodizing conditions such as electrode area, electrolyte concentration, and rotation speed of the roll mold. The areal ratio of the counter-electrode to the working electrode (aluminum), electrolyte concentration, and the roll-mold rotation speed were varied from 0.4% to 42%, 0.07 M to 0.3 M, and 5 rpm to 75 rpm, respectively. The experimental results showed that the single-nanopore ratio increased with increasing counter-electrode area and electrolyte concentration. However, the rotation speed had no significant effect on nanopore shape.

Detailed Measurement of Heat/Mass Transfer in a Rotating Two-Pass Duct (I) - Effects of Rib Tubulators - (이차 냉각 유로를 가진 회전덕트에서 열/물질전달 특성 (I) - 요철 설치에 따른 영향 -)

  • Kim, Kyung-Min;Kim, Sang-In;Kim, Yun-Young;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.910-920
    • /
    • 2004
  • The heat/mass transfer characteristics in a rotating two-pass duct with and without rib turbulators are investigated in the present study. The square duct has a hydraulic diameter ($D_h$) of 26.7 mm, and $1.5\;mm{\times}1.5\;mm$ square $90^{\circ}$-rib turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The Reynolds number based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number is varied from 0.0 to 0.20. In the smooth duct, the curvature of the $180^{\circ}$-turn produces Dean vortices that enhance heat/mass transfer in the post-turn region. When rib turbulators are installed, heat/mass transfer is augmented 2.5 times higher than that of the smooth duct since the main flow is turbulated by reattaching and separating in the vicinity of the duct surfaces. The duct rotation results in heat/mass transfer discrepancy so that Sherwood number ratios are higher on the trailing surface in the first-pass and on the leading surface in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent heat/mass transfer characteristics also change. As the rotation number increases, the heat/mass transfer discrepancy enlarges.

Application of Multi Parallel GAP to Rotation-Invariant Pattern Recognition (Multi Parallel GAP(Genetic Algorithm Processor)를 이용한 회전 불변 패턴 인식에의 응용)

  • 조민석;허인수;이주환;정덕진
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.29-32
    • /
    • 2001
  • In this paper, we applied the high-performance PGAP(Parallel Genetic Algorithm Processor) to recognizing rotated pattern. In order to perform this research efficiently, we used Multi-PGAP system consisted of four PGAP. In addition, we used mental rotation based on the rotated pattern recognition mechanism of human to reduce the number of operation. Also, we experimented with distinguishing specific pattern from similar coin patterns and determine rotated angle between patterns. The result showed that the development of future artificial recognition system is feasible by employing high performance PGAPS.

  • PDF

Digital control of high speed robot arm vibration (고속 로보트 팔 진동의 디지탈 제어)

  • 박노철;하영균;박영필
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.6-11
    • /
    • 1988
  • Alight-weight robot arm carrying a payload is modelled as a cantilever beam with a tip mass subjected to a high speed rotation. Equations of Motion, for modal control, are represented as discrete state variable form. Digital optimal control law with observer is developed to suppress the arm vibration and control the position of the joint angle. The effects of the number of controlled modes, weighting factors of the performance index, reference rotation time, and sampling time on the control performance are analyzed by computer simulation and experiments.

  • PDF