• Title/Summary/Keyword: rotation machine

Search Result 322, Processing Time 0.031 seconds

New technology Trends on Friction Stir Welding Based on Milling Process in terms of Tools, Machine and Applied Parts (밀링기반 마찰교반접합 신기술동향: 공구, 장비 및 응용부품)

  • Noh, Joong-Suk;Kim, Ju-Ho;Go, Gun-Ho;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.37-44
    • /
    • 2013
  • Friction stir welding (FSW) is a solid state joining technique that has expanded rapidly since its development in 1991 and has numerous applications in a wide variety of industries. This paper introduces the basic principles of friction stir welding (FSW) and presents a survey of the latest technologies and applications in the field. The basic principles that are discussed include the terminology, tool/workpiece processes, FSW merits and process variants. In particular, the process variants including the rotation speed and traveling speed are discussed, which include the defect-free zone in an oxygen free copper and Al alloy, respectively. Multiple aspects of the FSW machine are developed, including a horizontal 2D FSW machine and a hybrid complex FSW machine. The latest applications are introduced, with an emphasis on the recent advances in the aerospace, automotive, and IT display industries. Finally, the direction for future research and potential applications are examined.

A study on the damage of cutter bit due to the rotation speed of shield TBM cutter head in mixed ground (복합지반에서의 쉴드 TBM 커터헤드의 회전속도에 따른 커터비트 손상에 관한 실험적 연구)

  • Kang, Eun-Mo;Kim, Yong-Min;Hwang, In-Jun;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.403-413
    • /
    • 2015
  • This paper presents the cutter bit damage due to the rotation speed of shield TBM cutter head in the mixed ground. The efficient of cutter bits and disk cutter are very important for tunnelling in mixed ground. In particular, this research is focused on the performance of cutter bits during excavation in mixed ground which is consist of the weathered soil and rock formation. In order to carry out this research, the experimental works are prepared performed by using the scaled shield TBM cutter bits evaluation machine developed. The mixed ground is prepared considering with a scale effect of tunnel size. Three different rotation speeds of shield TBM cutter head (i.e. 2, 3, 4 rpm) are applied in the experimental work. The drag forces acting on the cutter bits are measured at each cutter bit during rotation of cutter head. It is also analysed the variation of drag forces due to the rotation speed of shield TBM cutter head. The results of this research are clearly shown that the drag forces acting on the cutter bits are jumped up at the boundary between weathered soil and rock. It is also indicated that the jamping drag forces are increased with increasing the rotation speed of the cutter head. It is found from the research that the higher rotation speed of shield TBM cutter head will be high risk in the mixed ground. It is, therefore, suggested that the use of lower rotation speed of shield TBM cutter head is recommended for reducing the cutter bit damage in practice.

A New Approach Increasing the Rotational Accuracy of Ball- Bearing Spindle by Using Proper Bearing Positioning

  • Yegor. A.;Lee, Choon-Man;Chung, Won-Jee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.15-21
    • /
    • 2003
  • In order to improve the quality of a spindle unit it is important to increase its rotational accuracy. The rotational accuracy of a spindle unit can be defined as the stability or immobility of its spindle axis while rotating. Spindle rotation in the rolling bearings causes the disturbing influence, which leads to the oscillation of a rotation axis. The purpose of this study is to investigate the oscillation sources and find a way to decrease the runout without additional expenses. The main source of oscillation is the interaction between rolling bodies and ring races. The first oscillation source was the out-of-shape imperfection of inner bearing ring. The mutual compensation of oscillation by proper rings orientation was proposed, which sometimes allow to decrease the radial runout of spindle rotation axis by approximate 40% down. Also the outer ring harmonics were explored as the second oscillation source. The analysis shows the dependency between the number of rolling bodies and the outer ring race harmonics. The conclusion on the orientation of bearing cages and the bearing rings was made, which makes possible to obtain the optimal variant of their mounting in the spindle unit when the rotational accuracy of the spindle is maximal, and the spindle runout considerably less.

A Comparison of System Performances Between Rectangular and Polar Exponential Grid Imaging System (POLAR EXPONENTIAL GRID와 장방형격자 영상시스템의 영상분해도 및 영상처리능력 비교)

  • Jae Kwon Eem
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.69-79
    • /
    • 1994
  • The conventional machine vision system which has uniform rectangular grid requires tremendous amount of computation for processing and analysing an image especially in 2-D image transfermations such as scaling, rotation and 3-D reconvery problem typical in robot application environment. In this study, the imaging system with nonuiformly distributed image sensors simulating human visual system, referred to as Ploar Exponential Grid(PEG), is compared with the existing conventional uniform rectangular grid system in terms of image resolution and computational complexity. By mimicking the geometric structure of the PEG sensor cell, we obtained PEG-like images using computer simulation. With the images obtained from the simulation, image resolution of the two systems are compared and some basic image processing tasks such as image scaling and rotation are implemented based on the PEG sensor system to examine its performance. Furthermore Fourier transform of PEG image is described and implemented in image analysis point of view. Also, the range and heading-angle measurement errors usually encountered in 3-D coordinates recovery with stereo camera system are claculated based on the PEG sensor system and compared with those obtained from the uniform rectangular grid system. In fact, the PEC imaging system not only reduces the computational requirements but also has scale and rotational invariance property in Fourier spectrum. Hence the PEG system has more suitable image coordinate system for image scaling, rotation, and image recognition problem. The range and heading-angle measurement errors with PEG system are less than those of uniform rectangular rectangular grid system in practical measurement range.

  • PDF

Effect of Surface Roughness on Cutting Conditions in CNC lathe C-Axis Milling Arc Cutting (CNC선반 C축 밀링 원호가공에서 절삭조건이 표면 거칠기에 미치는 영향)

  • Shin, Kuk-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.99-105
    • /
    • 2014
  • The domestic airline industry undertakes the production of finished products by assembling existing self-described components via a design process which involves assembly and production steps, after which many of the finished products are exported. However, high reliability and stability must be guaranteed, because customers require high-precision components at the time of manufacturing. In the aircraft parts industry, the mass production of high-value-added parts is limited. Therefore, a small production scale depending on the part is used, as many types of conventional CNC lathe machines with X-axis and Z-axis as well as Z-axis and C-axis CNC milling are used. The parts also rely on high-pressure air to increase production. The most important factors are good stability during processing, as high-precision parts are required, as noted above. It was found that as the C-axis rotation speed increased, the diameter of the cutting tool decreased with a decrease in the surface roughness, while the workpiece rotation speed increased with an increase in the surface roughness.

Oblique Single-Cut Rotation Osteotomy for Correction of Femoral Varus-Torsional Deformities in 3D-Reconstructed Canine Bone Models

  • Kim, Hyeon-Ho;Roh, Yoon-Ho;Lee, Je-Hun;Jeong, Jae-Min;Jeong, Seong Mok;Lee, Hae Beom
    • Journal of Veterinary Clinics
    • /
    • v.37 no.4
    • /
    • pp.180-184
    • /
    • 2020
  • The purpose of this study was to report the reliability and validity of oblique single-cut rotation osteotomy (OSCRO) in 3D-reconstructed canine bone models with femoral varus and torsional deformities. A healthy adult male beagle was recruited to create a 3D bone model, and this bone model was modified by using a 3D program. Fifteen bone models were constructed for this study. OSCRO simulation was performed in accordance with the plan after printing using a 3D printing machine. The anatomical lateral distal femoral angle (aLDFA), anteversion angle (AA), anatomical caudo-distal femoral angle (aCdDFA), mechanical caudo-distal femoral angle (mCdDFA) and pre- and postoperative bone length were calculated. There were no significant differences between the target values and postoperative values. In addition, the difference between pre- and postoperative bone length was small (p = 0.001). Our findings suggest that OSCRO could be an effective surgical option for MPL with bone deformities in small-breed dogs that often undergo conventional distal femoral osteotomy.

On low cost model-based monitoring of industrial robotic arms using standard machine vision

  • Karagiannidisa, Aris;Vosniakos, George C.
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.81-99
    • /
    • 2014
  • This paper contributes towards the development of a computer vision system for telemonitoring of industrial articulated robotic arms. The system aims to provide precision real time measurements of the joint angles by employing low cost cameras and visual markers on the body of the robot. To achieve this, a mathematical model that connects image features and joint angles was developed covering rotation of a single joint whose axis is parallel to the visual projection plane. The feature that is examined during image processing is the varying area of given circular target placed on the body of the robot, as registered by the camera during rotation of the arm. In order to distinguish between rotation directions four targets were used placed every $90^{\circ}$ and observed by two cameras at suitable angular distances. The results were deemed acceptable considering camera cost and lighting conditions of the workspace. A computational error analysis explored how deviations from the ideal camera positions affect the measurements and led to appropriate correction. The method is deemed to be extensible to multiple joint motion of a known kinematic chain.

Optimization of FSW of Nano-silica-reinforced ABS T-Joint using a Box-Behnken Design (BBD)

  • Mahyar Motamedi Kouchaksarai ;Yasser Rostamiyan
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.117-126
    • /
    • 2023
  • This experimental study investigated friction stir welding (FSW) of the acrylonitrile-butadiene-styrene (ABS) T-joint in the presence of various nano-silica levels. This study aim to handle the drawbacks of the friction stir welding (FSW) of an ABS T-joint with various quantity of nanoparticles and assess the performance of nanoparticles in the welded joint. Moreover, the relationship between the nanoparticle quantity and FSW was analyzed using response surface methodology (RSM) Box-Behnken design. The input parameters were the tool rotation speed (400, 600, 800 rpm), the transverse speed (20, 30, 40 mm/min), and the nano-silica level (0.8, 1.6, 2.4 g). The tensile strength of the prepared specimens was determined by the universal testing machine. Silica nanoparticles were used to improve the mechanical properties (the tensile strength) of ABS and investigate the effect of various FSW parameters on the ABS T-joint. The results of Box-Behnken RSM revealed that sound joints with desired characteristics and efficiency are fabricated at tool rotation speed 755 rpm, transverse speed 20 mm/min, and nano-silica level 2.4 g. The scanning electron microscope (SEM) images revealed the crucial role of silica nanoparticles in reinforcing the ABS T-joint. The SEM images also indicated a decrease in the nanoparticle size by the tool rotation, leading to the filling and improvement of seams formed during FSW of the ABS T-joint.

A Study on the Automatic Inspection System using Invariant Moments Algorithm with the Change of Size and Rotation (크기와 회전 변화에 불변 모멘트 알고리즘을 이용한 자동 검사 시스템에 관한 연구)

  • Lee, Yong-Joong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.37-43
    • /
    • 2004
  • The purpose of this study is to develop a practical image inspection system that could recognize it correctly, endowing flexibility to the productive field, although the same object for work will be changed in the size and rotated. In this experiment, it selected a fighter, rotating the direction from $30^{\circ}$ to $45^{\circ}$ simultaneously while changing the size from 1/4 to 1/16, as an object inspection without using another hardware for exclusive image processing. The invariant moments, Hu has suggested, was used as feature vector moment descriptor. As a result of the experiment, the image inspection system developed from this research was operated in real-time regardless of the chance of size and rotation for the object inspection, and it maintained the correspondent rates steadily above from 94% to 96%. Accordingly, it is considered as the flexibility can be considerably endowed to the factory automation when the image inspection system developed from this research is applied to the productive field.

An Experimental Study on Deep Collapse of Steel Tubes under Pure Bending (순수 굽힘 시험기를 이용한 연강 사각관의 굽힘 붕괴에 관한 실험적 연구)

  • KiM, C.S.;Chung, T.E.;Kang, S.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.37-44
    • /
    • 1997
  • In this paper the bending collapse characteristics of square and rectangular steel tubes were studied with the pure bending test machine which apply pure bending moment without imposing shear and tensile forces. Under pure bending moment, delayed buckling modes occur and depend on test length and shape of section. For delayed mode, the endrgy of bending moment is absorbed by strain hardening energy. The pre- dictions of maximum moment and moment-rotation angle curve from those concepts are in good agreement with experimental observations.

  • PDF