• Title/Summary/Keyword: rotating effect

Search Result 873, Processing Time 0.032 seconds

Pose Transformation of a Frontal Face Image by Invertible Meshwarp Algorithm (역전가능 메쉬워프 알고리즘에 의한 정면 얼굴 영상의 포즈 변형)

  • 오승택;전병환
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.153-163
    • /
    • 2003
  • In this paper, we propose a new technique of image based rendering(IBR) for the pose transformation of a face by using only a frontal face image and its mesh without a three-dimensional model. To substitute the 3D geometric model, first, we make up a standard mesh set of a certain person for several face sides ; front. left, right, half-left and half-right sides. For the given person, we compose only the frontal mesh of the frontal face image to be transformed. The other mesh is automatically generated based on the standard mesh set. And then, the frontal face image is geometrically transformed to give different view by using Invertible Meshwarp Algorithm, which is improved to tolerate the overlap or inversion of neighbor vertexes in the mesh. The same warping algorithm is used to generate the opening or closing effect of both eyes and a mouth. To evaluate the transformation performance, we capture dynamic images from 10 persons rotating their heads horizontally. And we measure the location error of 14 main features between the corresponding original and transformed facial images. That is, the average difference is calculated between the distances from the center of both eyes to each feature point for the corresponding original and transformed images. As a result, the average error in feature location is about 7.0% of the distance from the center of both eyes to the center of a mouth.

Characteristics of Wastewater Treatment in Applying RBC Modified Dephanox Process (회전원판법을 적용한 Modified Dephanox 공정의 하수처리특성)

  • Kang, Min-Koo;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.477-486
    • /
    • 2010
  • This study was performed with the object in which it improves the nitrification by using RBC, that is one of the biological waste water treatment process. By applying the Modified Dephanox process to RBC in this research in order to evaluate the improvement of the nitrification by RBC a research was conducted. There is the most conspicuous feature of the process of using RBC. it is that the nitrification can be smoothly performed even if the suspended solid of the high concentration as the interference factor in the nitrification tank is flowed in. Moreover, as a result of experiment, TCOD removal efficiency of the process showed up more than about 90%. when influent TCOD loading rate was 0.04~0.1 kg / $day{\cdot}m^3$. and T-N removal efficiency is high at about 75% in spite of the process operating of the laboratory scale was observed. Also, As increasing influent ${PO_4}^{3-}$-P, T-P loading rate, ${PO_4}^{3-}$-P, T-P removal efficiency was increased. Finally, it was elucidated that the utilization of RBC in external nitrification system resulted in not only high nitrification performance but also stable system operation by minimizing inhibitory effect of overflowed suspended solid (SS).

Spreading of motion aftereffect for rotational motion: Evidence of adaptation of global motion detector (회전 운동 잔여 효과의 확산 현상: 전역적 운동 탐지기의 순응에 대한 증거)

  • Kham Keetaek
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.1
    • /
    • pp.17-27
    • /
    • 2005
  • After prolonged viewing of a moving pattern, a stationary pattern can appear to move in the opposite direction, a phenomenon known as motion aftereffect (MAE). Unlike the classical explanation MAE was not confined to an adapted region; instead it can spread to an adjacent region, which was not adapted previously. In order to examine the relative locus of the mechanism responsible for MAE spreading, a rotating harmonic spiral pattern was presented as an adapting stimulus within an annulus window, and then the duration of MAE was measured in both the adapted annulus region and the non-adapted inner region. Two different kinds of test patterns were used: the same and mirror images of the original adapting pattern. An interesting characteristic of a harmonic spiral is that the orientation of a contour at a given location is different from thar of its mirror image by 90 degrees, and consequently the adapting effect of local motion detector is not expected to occur in the mirror image. The results showed that MAE duration in an adapted region was longer in the same image condition than in its mirror image condition, while MAE duration in an non-adapted region was not found to be different between those two different image conditions. These results suggest that MAE spreading might be produced by the adaptation of global motion detectors, not by local motion detectors.

  • PDF

Correlation between Anterior and Posterior Corneal Astigmatism in Total Corneal Astigmatism (전체 각막난시에서 전면과 후면 각막난시의 상관성)

  • Kim, Hyojin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.3
    • /
    • pp.377-382
    • /
    • 2014
  • Purpose: To investigate the effect of anterior, posterior corneal astigmatism and total corneal astigmatism on posterior corneal astigmatism by analyzing correlation. Methods: Participants were 31 patients (31 eyes) without corneal disease at the age range of 22 to 28 who had visited hospital to receive corneal refractive surgery. The total corneal astigmatism and anterior and posterior corneal astigmatism were measured using a rotating scheimpflug camera before surgery. The magnitude of astigmatism was calculated with the difference between the meridian of the steep refractive power and the flat, and With-The-Rule and inverse astigmatism were divided according to the direction of the meridian that was the steepest. Results: The averages of total corneal astigmatism and anterior and posterior astigmatism were found to be $1.13{\pm}0.76D$, $1.51{\pm}0.84D$, and $-0.59{\pm}0.17D$. The magnitude of posterior corneal astigmatism was distributed between -1.0 D and -0.25 D in all the subjects, and when the magnitude of total corneal astigmatism was set as 100, the magnitude of anterior corneal astigmatism was $142.9{\pm}29.9%$. Total corneal astigmatism indicated the highest correlation with the magnitude of anterior astigmatism (y = 0.871x-0.184, $R^2=0.982$) and high negative correlation with posterior astigmatism (y = -2.974x-0.184, $R^2=0.698$). All the subjects' anterior and posterior corneal astigmatism was classified into With-The-Rule. Conclusions: Anterior and posterior corneal astigmatism in the subjects in their 20's showed the magnitude of -3.8 D in 0.2 D and -0.25 D in -1.0 D separately, and both anterior and posterior astigmatism indicated a high percentage of With-The-Rule.

Determining the Rotation Periods of an Inactive LEO Satellite and the First Korean Space Debris on GEO, KOREASAT 1

  • Choi, Jin;Jo, Jung Hyun;Kim, Myung-Jin;Roh, Dong-Goo;Park, Sun-Youp;Lee, Hee-Jae;Park, Maru;Choi, Young-Jun;Yim, Hong-Suh;Bae, Young-Ho;Park, Young-Sik;Cho, Sungki;Moon, Hong-Kyu;Choi, Eun-Jung;Jang, Hyun-Jung;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.127-135
    • /
    • 2016
  • Inactive space objects are usually rotating and tumbling as a result of internal or external forces. KOREASAT 1 has been inactive since 2005, and its drift trajectory has been monitored with the optical wide-field patrol network (OWL-Net). However, a quantitative analysis of KOREASAT 1 in regard to the attitude evolution has never been performed. Here, two optical tracking systems were used to acquire raw measurements to analyze the rotation period of two inactive satellites. During the optical campaign in 2013, KOREASAT 1 was observed by a 0.6 m class optical telescope operated by the Korea Astronomy and Space Science Institute (KASI). The rotation period of KOREASAT 1 was analyzed with the light curves from the photometry results. The rotation periods of the low Earth orbit (LEO) satellite ASTRO-H after break-up were detected by OWL-Net on April 7, 2016. We analyzed the magnitude variation of each satellite by differential photometry and made comparisons with the star catalog. The illumination effect caused by the phase angle between the Sun and the target satellite was corrected with the system tool kit (STK) and two line element (TLE) technique. Finally, we determined the rotation period of two inactive satellites on LEO and geostationary Earth orbit (GEO) with light curves from the photometry. The main rotation periods were determined to be 5.2 sec for ASTRO-H and 74 sec for KOREASAT 1.

Evaluation of the Effect of Flocculator Rotation Direction in Floccualation Basin on Hydrodynamic Behavior using CFD (CFD를 이용한 플록큐레이터 회전방향에 따른 플록형성지 유동 평가)

  • Cho, Young-Man;Yoo, Soo-Jeon;Roh, Jae-Soon;Kim, taek-Jun;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.364-370
    • /
    • 2009
  • With time, the stable management of turbidity is becoming more important in the water treatment process. So optimization of flocculation is important for the improvement of the sedimentation efficiency. we evaluated the hydrodynamic behavior in the rotation direction (clock-wise, counterclock-wise) of the flocculator in the flocculation basin using Computational Fluid Dynamics (CFD). The results of the CFD simulation, in cases where flocculators rotate in a clockwise direction, a stronger flow is formed near the surface of the water where the rotating direction and current of flow correspond. The variance and standard deviation of the flux are about 8.5 and 2.9 respectively. In contrast, in the case of a counterclockwise direction, a stronger flow is formed near the bottom of the basin. The variance and standard deviation of the flux are about 5.3 and 2.3, respectively. The effluent flux is affected more by the third flocculator spin than the first and second flocculator spins. The third flocculator spinning in the counterclockwise direction is better for the uniform flow of the sedimentation basin than the third flocculator spinning in the clockwise direction

Flux Model of One-shaft Rotary Disc UF Module for the Separation of Oil Emulsion (1축 회전판형 UF 모듈의 투과모델 및 Oil Emulsion 분리 특성)

  • 김제우;노수홍
    • Membrane Journal
    • /
    • v.6 no.2
    • /
    • pp.86-95
    • /
    • 1996
  • Rotary disc ultrafiltration module(RDM) was developed for the separation of oil e$$\mu$sions. This module was devised to reduce the gel polarization phenomenon by decoupling the operation pressure and the surface velocity of solution in ultrafiltration(UF) processes. The rotary disc membrane consists of 3mm-thick ABS plate covered with UF membrane (UOP, U.S.A.). When the angular velocity($\omega$) was increased, the pure water flux was slightly decreased due to pressure drop caused by centrifugal force and slip flow at the surface of membrane. The pressure drop was proportional to the square of linear velocity(${\omega}r$). When the angular velocity was changed from 52.36rad/s to 2.62rad/s, the flux decline for 5% cutting oil in one-shaft RDM at $25^{\circ}C$ and 0.1MPa was 30.16%. In the lower concentrations, angular velocity tends to give less effect on the flux. Flux(J; $kg/m^{2} \cdot s$) in a rotating disc module is mainly a function of the bulk concentration($C_{B}$; %), the linear velocity(${\omega}r$; m/s) and the effective transmembrane pressure($\Delta P_{T}$ ; Pa). Using a modified resistance-in-series model, the flux data of cutting oil experiments were fitted to give the following equation.

  • PDF

A Critical Note on the Electric Field in Direct and Alternating Current and Its Consciousness

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.98-104
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-14}$ m and then the converging $\pi$-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion, because of the $\pi$-rays'hindrances, nearthenucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. Conventional Concept of Electric Field must be extended in the case of the direct and alternating current. Conventional concept is based on coulomb's force while the electric potential in the direct and alternating current is from Gibb's free energy. And also conventional concept has not any consciousness with human being but the latters has a conscious sensibility. The cell emf is from the kinetic energy of the open $\pi$-rays flow through the conducting wire. The electric potential in alternating current is from that the trans-orbital moving of the induced change of magnetic field in the wire produces flows of open $\pi$-rays, which push the rotating electrons on the orbital and then make the current flow. Human consciousness can induce a resonance with the sensibility of the open $\pi$-rays in the electric measuring equipment. Specially treated acupunctures with Nasucon is for sending an acupunctural effect from one place to another via space by someone's will power.

  • PDF

Study on the Projectile Velocity Measurement Using Eddy Current Probe (와전류 탐촉자를 이용한 총구 탄속 측정에 관한 연구)

  • Shin, Jungoo;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.83-86
    • /
    • 2015
  • Nowadays the weapon systems are employed air bursting munition (ABM) as smart programmable 40 mm shells which have been developed in order to hit the target with programmed munition that can be air burst after a set distance in the battlefield. In order to improve the accuracy of such a bursting time, by measuring the speed of the munition from the barrel, weapon systems calculate the exact time of flight to the target and then the time information must be inputted to the munition. In this study, we introduce a device capable of detecting a shot at K4 40 mm automatic grenade. The shot is composed of a rotating copper band to convert linear motion into rotary motion when it passes through the barrel, the steel section is exert the effect of fragment and aluminum section to give fuze information. The aluminum section was used to detect munition using eddy current method. To measure muzzle velocity by means of non-contact method, two eddy current probes separated 10 cm was employed. Time interval between two eddy current probe detection times was used as muzzle velocity. The eddy current probe was fabricated U-shape Mn-Zn ferrite core with enamelled copper wire, and 200 kHz alternating current was used to detect inductance change. Measured muzzle velocity using the developed sensor was compared to the Doppler radar system. The difference was smaller than 1%.

Preparation and Characterization of Wood Polymer Composite by a Twin Screw Extrusion (이축 압출공정을 이용한 Wood Polymer Composite의 제조 및 특성 분석)

  • Lee, Jong-Hyeok;Lee, Byung-Gab;Park, Ki-Hun;Bang, Dae-Suk;Jhee, Kwang-Hwan;Sin, Min-Cheol
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • Wood Polymer Composite (WPC) has attracted a great deal of attention in environmental industries due to renewable resources, processability, excellent physical properties and logging regulations for application to housing units and engineering construction materials. In this study, commercial WPCs were prepared by using a modular intermeshing co-rotating twin screw extruder. The effect of three main factors such as wood flour contents, coupling agent concentrations and pre-treatment of wood flour on the properties of WPCs was extensively investigated. It was found that tensile strength and thermal stability were decreased with increasing wood flour contents whereas the water absorption was increased. Addition of maleic anhydride grafted polypropylene (PP-g-MA) into WPC exhibited better physical properties. On the contrary, the water absorption was slightly decreased with PP-g-MA. Finally the sample, which was prepared with pre-treated wood flour, represented the highest tensile strength. However, the water absorption of the sample was increased due to the transition of crystalline structure of cellulose.