• Title/Summary/Keyword: rotating effect

Search Result 877, Processing Time 0.032 seconds

The Effect of Additives on the High Current Density Copper Electroplating (고전류밀도에서 첨가제에 따른 구리도급의 표면 특성 연구)

  • Shim, Jin-Yong;Moon, Yun-Sung;Hur, Ki-Su;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.29-33
    • /
    • 2011
  • The current density in copper electroplating is directly related with the productivity and then to increase the productivity, the increase in current density is required. To obtain the high mass flow rate, rotating disk electrode(RDE) was employed. High rotational speed in RDE can increase the mass flow rate and then high speed electroplating was possible using RDE to control mass flow. Two types of cathode were used. One is RDE and another is rotating cylindrical electrode(RCE). A constant-current, constant-voltage and linear sweep voltammetry were applied to investigate current and voltage relationship. The maximum current density without evolution of hydrogen gas was increased with rotational speed. Over 400 rpm, maximum current density was higher than 1000 A/$m^2$. The diffusion coefficients of copper calculated from the slope of the plots are $5.5{\times}10^6\;cm^2\;s^{-1}$ at $25^{\circ}C$ and $10.5{\times}10^6\;cm^2\;s^{-1}$ at $62^{\circ}C$. The stable voltage without evolution of hydrogen gas was -0.05 V(vs Ag/AgCl). Additives were added to prevent dendritic growth on cathode deposits. The surface roughness was analyzed with UV-Vis Spectrophotometer. The reflectance of the copper surface over 600 nm was measured and was related with the surface roughness. As the surface roughness improved, the reflectance was also increased.

Study for Characteristic of Frictional Heat Transfer in Rotating Brake System (회전을 고려한 브레이크 디스크의 마찰열전달 연구)

  • Nam, Jiwoo;Ryou, Hong Sun;Cho, Seong Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.817-822
    • /
    • 2017
  • The braking system is one of the most important components in vehicles and machines. It must exert a reliable braking force when they are brought to a halt. Generally, frictional heat is generated by converting kinetic energy into heat energy through friction. As the kinetic energy is converted into heat energy, high temperature heat is generated which affects the mechanical behavior of the braking system. Frictional heat affects the thermal expansion and friction coefficient of the brake system. If the temperature is not controlled, the brake performance will be decreased. Therefore, it is important to predict and control the heat generation of the brake. Various numerical analysis studies have been carried out to predict the frictional heat, but they assumed the existence of boundary conditions in the numerical analysis to simulate the frictional heat, because the simulation of frictional heat is difficult and time consuming. The results were based on the assumption that the frictional heat is different from the actual temperature distribution in a rotating brake system. Therefore, the reliability of the cooling effect or thermal stress using the results of these studies is insufficient. In order to overcome these limitations and establish a simulation procedure to predict the frictional heat, this study directly simulates the frictional heat generation by using a thermal-structure coupling element. In this study, we analyzed the thermo-mechanical behavior of a brake model, in order to investigate the thermal characteristics of brake systems by using the Finite Element method (FEM). This study suggests the necessity to directly simulate the frictional heating and it is hoped that it can provide the necessary information for simulations.

Injection of a Denser Fluid into a Rotating Cylindrical Container Filled with Homogeneous Lighter Fluid (균질의 회전유체에 고밀도유체 주입실험)

  • 나정열;황병준
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.355-364
    • /
    • 1995
  • A heavy fluid is injected to a rotating cylindrical container of flat or inclined bottom filled with homogeneous lighter fluid. Continuous flow-in and spreading patterns over the bottom of the container are observed and at the same time upper-layer motions induced by the movement of the heavy fluid are traced by thymol blue solution. Regardless of bottom geometry, the injected denser fluid is deflected toward "western wall" and continuous its path along the boundary with radial spreading which occurs in the bottom boundary layer to make a quite asymmetric flow. When the bottom contains a slope(${\beta}$-plane), increased pressure gradient causes the fluid move faster to produce a stronger Coriolis force. This makes the width of the flow narrower than that of f-plane. But, when the denser flow reaches the southern part of the container, a local-depth of denser fluid increases (much greater than the Ekman-layer depth) such that the spreading velocity along the wall is reduced and the interfacial slope increases to make the upper-layer adjust geographically to have oppositely directed upper-layer motion along the interfacial boundary. The role of the denser fluid in terms of vorticity generation in the upper-layer is such that it produces local topographic effect over the western half of the container and also induces vortex-tube stretching which is especially dominant in the f-plane.

  • PDF

Effect of lining application techniques on microleakage in class II composite restorations (다양한 방식으로 적용한 이장재가 2급와동 복합레진 수복의 미세누출에 미치는 영향)

  • Hwang, Byung-Moon;Kim, Joo-Hyung;Park, Ji-Man;Millstein, Philip;Park, Eun-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.2
    • /
    • pp.145-151
    • /
    • 2014
  • Purpose: The purpose of this study was to investigate the microleakage in class II cavity resin restorations used with resin-modified glass ionomer (RMGI) lining material depending on two different applying methods; classical delivery method using a dental explorer and a specially designed rotating bur. Materials and Methods: A total thirty-six extracted teeth were prepared with a class II proximal box, and randomly divided into three groups: 1) control group with no lining added and the proximal box restored (Group I), 2) the second group used RMGI as a lining material which was spread with an explorer (Group II), 3) the third group used a specially designed rotating bur to thin out RMGI (Group III). All teeth were restored with the same manner using incrementally placed resin composite. All 36 teeth were prepared and sectioned for the dye penetration test, and observed with a stereomicroscope for scoring the dye penetration. Results: When RMGI liners were used, both groups using an explorer and the special bur with the liner had significantly less microleakage than the control group with no liner (P < 0.05). The 50% of the group with RMGI liner using the bur showed no microleakage under a dye penetration test whereas all the teeth in control group showed microleakage of different degrees. However, there was no statistically significant difference between Group II and Group III. Conclusion: RMGI is an effective lining material to decrease microleakage in class II composite resin restorations regardless of applying methods.

A Study of Drag Reduction by Polymer-Surfactant Mixture System (고분자-계면활성제 혼합물에 의한 마찰저항 감소연구)

  • Kim, Jeong-Tae;Kim, Cheol-Am;Choe, Hyeong-Jin;Kim, Jong-Bo;Yun, Hyeong-Gi;Park, Seong-Ryong
    • Korean Journal of Materials Research
    • /
    • v.8 no.2
    • /
    • pp.135-140
    • /
    • 1998
  • Drag reduction produced by dilute solution of water soluble ionic polymer-surfactant complex under turbulent flow in a rotating disk apparatus(RDA) was investigated in this study. Three different molecular weights of polyacrylic acid(PAA) were adopted as drag reducing additives, and distilled water was used as a solvent. Experiments were undertaken to observe the dependence of drag reduction on various factors such as polymer molecular weight, molecular expansions and flexibility, rotating speed of the disk and polymer concentration. Specific considerations were put on conformational difference between surfactant and polymer, and effect of pH on ionic polymer possessing various molecular conformation through pH. The complex of ionic polymer and surfactant(Sodium Dodecyl Sulfate) behaves like a large polyelectrolyte. Surfactant changes the polymer conformation and then increases the dimension of the polymer. The radius of gyration, hydrodynamic volume and relative viscosity of the polymer-surfactant system are observed to be greater than those of polymer itself. Such surfactant-polymer complex has enhanced drag reduction properties.

  • PDF

The Effect of Magnetic Field Annealing on the Structural and Electromagnetic Properties of Bising $Co_{82}Zr_6Mo_{12}$ Thin Films for Magnetoresistance Elements (자기저항소자의 바이어스용 $Co_{82}Zr_6Mo_{12}$ 박막의 구조 및 전자기적 특성에 미치는 자장 중 열처리의 영향)

  • 김용성;노재철;이경섭;서수정;김기출;송용진
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.2
    • /
    • pp.111-120
    • /
    • 1999
  • The effects of annealing in rotating magnetic field after deposition on electromagnetic properties of $Co_{82}Zr_6Mo_{12}$ thin (200~1200 $\AA$) films prepared by RF-magnetron sputtering were investigated in terms of microstructure and surface morphology. The coercivity decreases, but $4{\pi}M_5$ does not change with increasing the film thickness. The coercivity of the films was decreased below 300 $^{\circ}C$ due to stress relief and decreasing the surface roughness, while increased at 400 $^{\circ}C$ due to partial grain growth. And then, $4{\rho}M_5$ was almost independent of annealing temperatures below 200 $^{\circ}C$, but increased from 7.4 kG to 8.0 kG at 300 $^{\circ}C$ and at 400 $^{\circ}C$, which was caused by precipitation and growth of fine Co particles in the films. The electrical resistivity of films was decreased with increasing annealing temperatures and the magnetoresistance was a negative value of nearly 0 $\mu$$\Omega$cm. After annealing at 300 $^{\circ}C$, maximum effective permeability was 1200 to the hard axis of the thin films according to high frequency change. Considering the practical application of biasing layers of the films for magnetoresistive heads, optimal annealing conditions was obtained after one hour annealing at 300 $^{\circ}C$ in 400 Oe rotating magnetic field.

  • PDF

A Study on the Measurement Method for Improvement of Reliability for Heavy-Weight Floor Impact Sound Measurement (중량 바닥충격음 측정의 신뢰성 향상을 위한 측정방법 검토)

  • Joo, Moon-Ki;Park, Jong-Young;Yang, Kwan-Seop;Oh, Yang-Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.163-170
    • /
    • 2008
  • Most of receiving rooms for the measurement of floor impact sound have rectangular shapes with couple of meters of dimension, with reflective finishing, no furniture, no curtains. Modal overlaps in those condition are the major reason for the low reproducibility, and as a matter of course, the low credibility. It is the major purpose of this study that searching for a better measurement method which mitigate the effect of modal overlap on measurement. Two ways of methods are tested. One is the way described in ISO standards which enables controlling the room modes of receiving rooms, the other is the way which enables to get more precise spatial averages in receiving rooms with room modes. It is not easy maintaining the reverberation time of low frequency bands in the range between 1s and 2s, though it is proven to be effective controlling the room modes with base traps. Space-time average SPL's through combinations of rotating microphones are easy to measure, and have good consistencies with average SPL of entire receiving room.

A FINITE ELEMENT AND STRAIN GAUGE ANALYSIS ON THE DISPLACEMENT OF CRANIOFACIAL COMPLEX WITH CERVICAL HEADGEAR (경부고정(頸部固定) headgear 사용시(使用時) 안면두개골(顔面頭蓋骨)의 변위(變位)에 관(關)한 장력계측법(張力計測法) 및 유한요소법적(有限要素法的) 연구(硏究))

  • Kim, Hyun-Soon;Nahm, Dong-Seok
    • The korean journal of orthodontics
    • /
    • v.17 no.2
    • /
    • pp.185-200
    • /
    • 1987
  • This paper was undertaken to observe the displacement of craniofacial complex with cervical headgear and to compare narrowing or widening effect of palate by use of contraction or expansion face-bow, respectively. The 3-dimensional finite element method(FEM) was used for a mathematical model composed of 597 nodes and 790 elements and an electrical resistance strain gauge investigation was performed to validate the finite element model. The outer bow of cervical headgear was adjusted to be placed below the occlusal plane by $25^{\circ}$ and met the midsagittal plane by $40^{\circ}$, and was loaded 1kg on each right and left hook toward posterior direction. The results were as follows 1. Generally, the maxillary teeth and facial bone were displaced in posterior, medial and downward direction. 2. It was the maxillary 2nd bicuspid that moved bodily. 3. The craniofacial complex rotated in a clockwise direction around the rotating axis which lay from the most posterior and lowest point connecting nasal crest of maxillary bone and vomer, progressively toward a more posterior, lateral and upward direction, anterior and upper area of pterygomaxillary fissure, base of medial pterygoid plate and laterally to the contact area of zygomatic arch with squamous part of temporal bone. 4. No contraction effect was observed by contraction face-bow when compared to the standard face-bow. 5. In case of expansion face-bow, the areas of maxillary 2nd bicuspid, molars and palate were expanded remarkably.

  • PDF

Nonlinear Finite Element Analysis of Reinforced and Prestressed Concrete Structures (철근 및 프리스트레스트 콘크리트 구조물의 비선형 유한요소 해석)

  • Kwak, Hyo Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.269-279
    • /
    • 1994
  • This paper concentrates on the finite element analysis of concrete structures considering the material nonlinearity and time-dependent structural behavior. Using the rotating crack model among the smeared cracking model, the structural behavior up to ultimate load is simulated, and concrete is assumed to be an orthotropic material. Especially to include the tension stiffening effect in bending behavior, a criterion based on the fracture mechanics concept is introduced and the numerical error according to the finite element mesh size can be minimized through the application of the proposed criterion. Besides, the governing equation for steel is systematized by embeded model to cope with the difficulty in modeling of complex geometry. Finally, to trace the structural behavior with time under cracked and/or uncracked section, an algorithm for the purpose of time-dependent analysis is formulated in plane stress-strain condition by the age-adjusted effective modulus method.

  • PDF

A Study on Tribological Characteristics of DLC Films Considering Hardness of Mating Materials (상대 재료의 경도를 고려한 DLC필름의 트라이볼로지 특성)

  • Na, Byeong-Cheol;Tanaka, Akihiro
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.260-266
    • /
    • 2002
  • DLC films were deposited on Si wafer by RF plasma assisted CVD using CH4 gas. Tribological tests were conducted using rotating type ball on disk friction tester in dry air. Four kinds of mating balls were used. The mating balls were made with stainless steel but apply different annealing conditions to achieve different hardness conditions. Testing results in all load conditions showed that the harder the mating materials, the lower the friction coefficient among the three kind of martensite mating balls. In case of austenite balls, the friction coefficients were lower than fully annealed martensite ball. The high friction coefficient in soft martensite balls seems to be caused by the larger contact area between DLC film and ball. The wear tracks of DLC films and mating balls could have proven that effect. Measuring the wear track of both DLC films and mating balls have similar tendency comparing to the results of friction coefficients. Wear rate of austenite balls were also smaller than that of fully annealed martensite ball. The results of effect of applying load showed, the friction coefficients were become decrease when the applying loads exceed critical load conditions. The wear track of mating balls showed that some material transfer occurs from DLC film to mating ball during the high friction process. Raman spectra analysis showed that transferred material was a kind of graphite and contact surface of DLC film seems to undergo phase transition from carbon to graphite during the high friction process.