• Title/Summary/Keyword: rotating blade

Search Result 450, Processing Time 0.027 seconds

Bulk Flow Pulsations and Film Cooling from Two Rows of Staggered Holes : Effect of Blowing Ratios (주유동의 맥동과 엇갈린 2열 분사홀로부터의 막냉각 : 분사비의 영향)

  • Sohn, Dong Kee;Lee, Joon Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1195-1207
    • /
    • 1998
  • Periodic pulsations in the static pressure near turbine surfaces as blade rows move relative to each other is one of the important sources of turbine unsteadiness. The present experiment aims to investigate the effect of the static pressure pulsations on the interaction of film coolant flows from two rows of staggered holes with mainstream and its effect on film cooling heat transfer. Potential flow pulsations are generated by the rotating shutter mechanism installed downstream of the test section, The free-stream Strouhal number based on the boundary layer thickness is in the range of 0.033 - 0.33, and the amplitude of about 10-20%. Measured are time-averaged and phase-averaged velocity variations, pressure variations and temperature distributions of the flow field. Experimental conditions are identified by boundary layer measurements. Injectant behavior is characterized by the measurements of unsteady pressure in the plenum chamber and free-stream static pressure. The film cooling effectiveness is evaluated from the insulated wall temperature measurement. It has been found that bulk flow pulsation provides very large diffusion of the injectants and the effectiveness is significantly reduced by the flow pulsations.

A Study on the Fatigue Strength of Propeller Blades (프로펠러 날개의 피로강도에 관한 연구)

  • Nho, In-Sik;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.539-543
    • /
    • 2011
  • Recently, to reduce the noise and vibration levels of ships, high skewed marine propellers with thinner thickness are adopted widely, however, such propeller design trend causes to reduce the strength of blades. Propeller blades are rotating continuously in irregular wake field of ships. So, it is necessary to examine the strength of them precisely including from a viewpoint of fatigue strength. In present paper, the fatigue strength of propeller blades was investigated. Firstly, fatigue tests for Al Bronze, the representative propeller material, were carried out. The S-N curve was obtained for the assessment of the fatigue crack initiation life. And the material properties C, m for the fatigue crack propagation analysis based on the Paris' equation were derived. For the 2nd stage, the structural responses of propeller blades in irregular ship wake field was carried out using the finite element analysis code. And the fatigue strength of propeller blades were considered based on the calculated stress levels and material characteristics for fatigue strength.

Measurements of Minute Unsteady Pressure on Three-Dimensional Fan with Arbitrary Axis Direction

  • Hirata, Katsuya;Fuchi, Takuya;Onishi, Yusuke;Takushima, Akira;Sato, Seiji;Funaki, Jiro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • The present study is a fundamental approach to develop the measuring technology for minute fluctuating pressures on the three-dimensional blade surfaces of the fan which rotates with an arbitrary rotation-axis direction. In this situation, we are required to correct the centrifugal-force effect, the gravitational-force effect and the other leading-error effects for accurate measurements of the minute pressures. The working fluid is air. A pressure transducer rotating with an arbitrary attitude is closely sealed by a twofold shroud system. The rotational motion with an arbitrary attitude is produced by fixing the pressure transducer to the cantilever which is connected to a motor-driven disc of 500mm in diameter and 5mm in thickness. As a result, we have quantitatively determined main governing effects upon the non-effective component of the pressure-transducer signal.

Study on Damage Mechanism Analysis and Recovery Characteristic of the Large Scale Steam Turbine Cased by Water Induction (대형 증기터빈 물유입에 의한 손상메커니즘 분석과 원상복구특성 연구)

  • Kim, D.Y.;Park, G.H.;Lee, B.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.22-29
    • /
    • 2011
  • In this study, the damage mechanism of large scale steam turbine due to water induction was analyzed and recovery characteristics were reviewed. A turbine consists of the rotating rotor and the stationary casing, and the clearance between them is very small for the efficiency enhancement. If water induction, while relatively cold steam or water is introduced into turbine, occurs, the considerable humping is caused at the casing near the initial water induction point and that induces the rubbing between rotor and casing. Finally, it leads to the catastrophic failure. Bowed rotor has the different characteristics in the recovery depending on damage degree. The elastic deformation due to light rubbing is recovered by turning the rotor with 3 rpm under normal operation condition, but most plastic deformation due to rubbing deforms the local microstructure and that results in permanent deformation which could not be recovered under normal operation condition. Bowed rotor has diverse characteristics depending on the recovery method, and the method is empirical and needs the cutting edge technology. Careful recovery treatment of the rotor will eliminate the risks and secure the high quality rotor similar to new rotor. If any critical error is made during the recovery, the rotor would not be recovered permanently and it should be scrapped.

Numerical simulation of the unsteady flowfield in complete propulsion systems

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.349-362
    • /
    • 2018
  • A non-linear numerical simulation technique for predicting the unsteady performances of an airbreathing engine is developed. The study focuses on the simulation of integrated propulsion systems, where a closer coupling is needed between the airframe and the engine dynamics. In fact, the solution of the fully unsteady flow governing equations, rather than a lumped volume gas dynamics discretization, is essential for modeling the coupling between aero-servoelastic modes and engine dynamics in highly integrated propulsion systems. This consideration holds for any propulsion system when a full separation between the fluid dynamic time-scale and engine transient cannot be appreciated, as in the case of flow instabilities (e.g., rotating stall, surge, inlet unstart), or in case of sudden external perturbations (e.g., gas ingestion). Simulations of the coupling between external and internal flow are performed. The flow around the nacelle and inside the engine ducts (i.e., air intakes, nozzles) is solved by CFD computations, whereas the flow evolution through compressor and turbine bladings is simulated by actuator disks. Shaft work balance and rotor dynamics are deduced from the estimated torque on each turbine/compressor blade row.

Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory

  • Mirzaei, Manouchehr Mohammad Hosseini;Loghman, Abbas;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.567-576
    • /
    • 2019
  • Time-dependent creep analysis of a rotating functionally graded cantilever beam with trapezoidal longitudinal cross section subjected to thermal and inertia loading is investigated using first-order shear deformation theory (FSDT). The model described in this paper is a simple simulation of a turbine blade working under creep condition. The material is a metal based composite reinforced by a ceramic where the creep properties of which has been described by the Sherby's constitutive model. All mechanical and thermal properties except Poisson's ratio are assumed to be variable longitudinally based on the volume fraction of constituent. The principle of virtual work as well as first order shear deformation theory is used to derive governing equations. Longitudinal distribution of displacements and stresses are investigated for various volume fractions of reinforcement. Method of successive elastic solution is employed to obtain history of stresses and creep deformations. It is found that stresses and displacements approach their steady state values after 40000 hours. The results presented in this paper can be used for selection of appropriate longitudinal distribution of reinforcement to achieve the desired stresses and displacements.

Flow characteristics validation around drain hole of fan module in refrigerator (냉장고 팬 모듈의 물빠짐 구멍 주변 유동 특성 검증)

  • Jinxing, Fan;Suhwan, Lee;Heerim, Seo;Dongwoo, Kim;Eunseop, Yeom
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.102-108
    • /
    • 2022
  • In the fan module of the intercooling refrigerator, a drain hole structure was designed for stable drainage of defrost water. However, the airflow passing through the drain hole can disturb flow features around the evaporator. Since this backflow leads to an increase in flow loss, the accurate experimental and numerical analyses are important to understand the flow characteristics around the fan module. Considering the complex geometry around the fan module, three different turbulence models (Standard k-ε model, SST k-ω model, Reynolds stress model) were used in computational fluid dynamics (CFD) analysis. According to the quantitative and qualitative comparison results, the Standard k-ε model was most suitable for the research object. High-accuracy results well match with the experiment result and overcome the limitation of the experiment setup. The method used in this study can be applied to a similar research object with an orifice outflow driven by a rotating blade.

A Study on the Accelerated Life Test of Yaw Gearbox for Wind Turbine (풍력발전기용 Yaw gearbox의 가속 수명시험에 관한 연구)

  • Yong-Bum Lee;G. C. Lee;J. J. Lee;S. Y. Lim
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.16-21
    • /
    • 2024
  • The yaw gearbox is a key device in a wind power generator that improves power generation efficiency by rotating hundreds of tons (400 to 600 tons) of nacelle so that the blade reaches 90 degrees in the wind direction. Recently, installation sites have been advancing from land to sea as they have become super-large at (8-12) MW to increase the economic feasibility of wind power generators and utilize excellent wind resources, and the target life of large wind power generators is 25 to 30 years. The yaw gearbox of 6 to 12 sets is installed in a very complex place inside the nacelle on the tower with parallels, and it is important to secure the reliability of the yaw gearbox because if a failure occurs after installation, it costs tens to hundreds of times the price of a new product to restore. In this study, equivalent loads were calculated by analyzing failure mode and field data, accelerated life test conditions were established, and a test device was constructed to perform the accelerated life tests and performance tests to ensure the reliability of the gearbox.

Visualization of Flow in a Transonic Centrifugal Compressor

  • Hayami Hiroshi
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.1-6
    • /
    • 2002
  • How is the flow in a rotating impeller. About 35 years have passed since one experimentalist rotating with the impeller. of a huge centrifugal blower made the flow measurements using a hot-wire anemometer (Fowler 1968). Optical measurement methods have great advantages over the intrusive methods especially for the flow measurement in a rotating impeller. One is the optical flow visualization (FV) technique (Senoo, et al., 1968) and the other is the application of laser velocimetry (LV) (Hah and Krain, 1990). Particle image velocimetries (PIVs) combine major features of both FV and LV, and are very attractive due to the feasibility of simultaneous and multi-points measurements (Hayami and Aramaki, 1999). A high-pressure-ratio transonic centrifugal compressor with a low-solidity cascade diffuser was tested in a closed loop with HFC134a gas at 18,000rpm (Hayami, 2000). Two kinds of measurement techniques by image processing were applied to visualize a flow in the compressor. One is a velocity field measurement at the inducer of the impeller using a PIV and the other is a pressure field measurement on the side wall of the cascade diffuser using a pressure sensitive paint (PSP) measurement technique. The PIV was successfully applied for visualization of an unsteady behavior of a shock wave based on the instantaneous velocity field measurement (Hayami, et al., 2002b) as well as a phase-averaged velocity vector field with a shock wave over one blade pitch (Hayami, et al., 2002a. b). A violent change in pressure was successfully visualized using a PSP measurement during a surge condition even though there are still some problems to be overcome (Hayami, et al., 2002c). Both PIV and PSP results are discussed in comparison with those of laser-2-focus (L2F) velocimetry and those of semiconductor pressure sensors. Experimental fluid dynamics (EFDs) are still growing up more and more both in hardware and in software. On the other hand, computational fluid dynamics (CFDs) are very attractive to understand the details of flow. A secondary flow on the side wall of the cascade diffuser was visualized based either steady or unsteady CFD calculations (Bonaiuti, et al.,2002). EFD and CFD methods will be combined to a hybrid method being complementary to each other. Measurement techniques by image processing as well as CFD calculations give a huge amount of data. Then, data mining technique will become more important to understand the flow mechanism both for EFD and CFD.

  • PDF

Tip Clearance Effects on Inlet Hot Streaks Migration Characteristics in Low Pressure Stage of a Vaneless Counter-Rotating Turbine

  • Zhao, Qingjun;Wang, Huishe;Zhao, Xiaolu;Xu, Jianzhong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.25-34
    • /
    • 2008
  • In this paper, three-dimensional multiblade row unsteady Navier-Stokes simulations at a hot streak temperature ratio of 2.0 have been performed to reveal the effects of rotor tip clearance on the inlet hot streak migration characteristics in low pressure stage of a Vaneless Counter-Rotating Turbine. The hot streak is circular in shape with a diameter equal to 25% of the high pressure turbine stator span. The hot streak center is located at 50% of the span and the leading edge of the high pressure turbine stator. The tip clearance size studied in this paper is 2.0mm(2.59% high pressure turbine rotor height, and 2.09% low pressure turbine rotor height). The numerical results show that the hot streak is not mixed out by the time it reaches the exit of high pressure turbine rotor. The separation of colder and hotter fluid is observed at the inlet of low pressure turbine rotor. Most of hotter fluid migrates towards the rotor pressure surface, and only little hotter fluid migrates to the rotor suction surface when it convects into the low pressure turbine rotor. And the hotter fluid migrated to the tip region of the high pressure turbine rotor impinges on the leading edge of the low pressure turbine rotor after it goes through the high pressure turbine rotor. The migration of the hotter fluid directly results in very high heat load at the leading edge of the low pressure turbine rotor. The migration characteristics of the hot streak in the low pressure turbine rotor are dominated by the combined effects of secondary flow and leakage flow at the tip clearance. The leakage flow trends to drive the hotter fluid towards the blade tip on the pressure surface and to the hub on the suction surface, even partial hotter fluid near the pressure surface is also driven to the rotor suction surface through the tip clearance. Compared with the case without rotor tip clearance, the heat load of the low pressure turbine rotor is intensified due to the effects of the leakage flow. And the numerical results also indicate that the leakage flow effect trends to increase the low pressure turbine rotor outlet temperature at the tip region.

  • PDF