• Title/Summary/Keyword: rotating blade

Search Result 450, Processing Time 0.031 seconds

Multi-Body Dynamic Response Analysis of a MW-Class Wind Turbine System Considering Rotating and Flexibility (로터 회전 및 타워의 탄성력을 고려한 MW 급 풍력발전기의 비선형 다물체 동적 응답 해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Kim, Yo-Han;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.78-83
    • /
    • 2009
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a whole huge wind turbine system including composite blades, tower and nacelle. For this study, computational fluid dynamics (CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade model. Multi-body dynamic structural analyses are conducted based on the non-linear finite element method (FEM) by using super-element method for composite laminates blade. Three-dimensional finite element model of a wind turbine system is constructed including power train(main shaft, gear box, coupling, generator), bedplate and tower. The results for multi-body dynamic simulations on the wind turbine's critical operating conditions are presented in detail.

  • PDF

Evalulation of the Tower Fatigue Loads by Ice Formation on Rotor Blades (로터 블레이드 결빙에 의한 타워 피로하중 평가)

  • Kim, Jeong-Gi;Park, Sun-Ho;Bang, Jo-Hyug;Jung, Jong-Hun;Kim, Sang-Dug;Ryu, Ji-Yune
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.43-49
    • /
    • 2014
  • Primarily, tower loads of a wind turbine arise from aerodynamic effect and a top head mass. But sometime asymmetric loads of rotor also affect on the tower loads. Especially ice formation on two blades out of three causes the asymmetric loads, because the ice formation on blades lead to large rotating mass imbalance. This rotating mass imbalance of rotor affects tower fatigue loads. So design load cases of ice formation on blade should be considered in the fatigue design loads of the tower according to GL guideline 2010. This paper describes the change of tower fatigue loads following increase of tower height in the condition of ice formation. Finally, the optimal operation strategy is examined in order to reduce tower fatigue design loads.

Basic Properties Test and Non-rotating Dynamic Test of Helicopter Rotor (헬리콥터 로터 블레이드의 기본 물리량 및 비회전 동특성 시험)

  • Yun, Chul Yong;Kim, Taejoo;Kee, Young-Jung;Sim, Heon-Su;Kim, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.103-108
    • /
    • 2013
  • This paper describes basic properties tests and non-rotating dynamic test for rotor blade, flexbeam, and torque tube of which bearingless rotor in helicopter consists. A basic properties test are bending and twist test to find the flap stiffness, lag stiffness, and twist stiffness of specimens. The purpose of dynamic test is to find natural frequencies and modes in non-rotating state. The test results are used to update the analysis model. The updated analysis results using rotorcraft comprehensive code match the tests quite well. The updated model input based on the tests will be utilized to analysis the conditions of rotating whirl tower test before the whirl test and will be compared with the whirl tower test results.

  • PDF

An Experimental Study of Incidence Angel Effect on 3-D Axial Type Turbine (3차원 축류형 터빈에서 입사각의 영향에 관한 실험적 연구)

  • Kim, Dong-Sik;Cho, Soo-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1292-1301
    • /
    • 2002
  • An experimental study of turbine performance is conducted with various incidence angles on a rotating turbine rotor. 5 different incidence angles are applied from -17$^{\circ}$to 13$^{\circ}$with 7.5$^{\circ}$gaps. In order to precisely set up the incidence angles at the rotor inlet, 5 turbine discs are manufactured with the different fir tree section. Total-to-total efficiencies are obtained on the several off-design points with considering the exit total pressure, which is meas fred at 12 locations between the hub and casing using a pressure rake. The degree of reaction is 0.373 at the mean radius, and Reynolds number based on the rotor chord is 0.86$\times$10$^{5}$ at the turbine inlet on the design point experiment. The experiment on a single-stage turbine is conducted at the low-pressure and low-speed state, but it is sufficient to consider the blade loading effect due to the rotating apparatus even though the total pressure loss at the exit is increased proportionally to the turbine output power. The experimental results recommend 6$^{\circ}$as an optimum incidence angle on the turbine blade design. The total-to-total efficiency is steeply decreased when the incidence angle is over $\pm$9$^{\circ}$ from the optimum incidence angle. In the range of less than -10$^{\circ}$incidence angle, 7.5$^{\circ}$ reduction of incidence angle generates 15% decrease of total-to-total efficiency. This result is obtained on the same rotor blade by changing only the rotational speed to minimize the effect of profile and secondary flow loss in the passage. Experimental results show that the change rate of total-to-total efficiency according to the incidence angle change is unchanged although the turbine operates at the off-design condition.

Design of KUH Main Rotor Small-scaled Blade (KUH 주로터 축소 블레이드 설계)

  • Kim, Do-Hyung;Kim, Seung-Ho;Han, Jung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.32-41
    • /
    • 2009
  • In this study, scale-down design of full-scale Korean Utility Helicopter (KUH) main rotor blade has been investigated. The scaled model system were designed for the measurement of aerodynamic performance, tip vortex and noise source. For the purpose of considering the same aerodynamic loads, the Mach-scale method has been applied. The Mach-scaled model has the same tip Mach number, and it also has the same normalized frequencies. That is, the Mach-scaled model is analogous to full-scale model in the view point of aerodynamics and structural dynamics. Aerodynamic scale-down process could be completed just by adjusting scaling dimensions and increasing rotating speed. In the field of structural dynamics, design process could be finished by confirming the rotating frequencies of the designed blade with the stiffness and inertial properties distributions produced by sectional design. In this study, small-scaled blade sectional design were performed by applying domestic composite prepregs and structural dynamic characteristics of designed model has been investigated.

  • PDF

PIV Velocity Field Analysis of Inflow ahead of a Rotating Marine Propeller (회전하는 선박 프로펠러 전방 유입류에 대한 PIV 속도장 해석)

  • 이상준;백부근
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.30-37
    • /
    • 2004
  • Flow characteristics of the inflow ahead of a rotating propeller attached to a container ship model were investigated using a two-frame PIV (Particle Image Velocimetry) technique. Ensemble-averaged mean velocity fields were measured at four different blade phases. The mean velocity fields show the acceleration of inflow due to the rotating propeller and the velocity deficit in the near-wake region. The axial velocity distribution of inflow in the upper plane of propeller is quite different from that in the lower plane due to the thick hull boundary layer. The propeller inflow also shows asymmetric axial velocity distribution in the port and starboard side. As the inflow moves toward the propeller, the effect of phase angle variation of propeller blade on the inflow becomes dominant. In the upper plane above the propeller axis the inflow has very low axial velocity and large turbulent kinetic energy, compared with the lower plane. The boundary layer developed along the bottom surface of stern hull forms a strong shear layer affecting vortex structure of the propeller near-wake.

Experimental Study on the Unsteady Cavitation of Turbopump Inducer (터보펌프 인듀서의 비정상 캐비테이션에 관한 실험적 연구)

  • Hong, Soon-Sam;Kim, Jin-Sun;Choi, Chang-Ho;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.333-339
    • /
    • 2003
  • Steady and unsteady cavitation characteristics of turbopump inducer were investigated in this paper. To see the effect of blade angle on the inducer performance, three inducers with inlet tip blade angle of $7.8^{\circ},\;7.0^{\circ},\;6.1^{\circ}$, respectively, were tested. For $7.8^{\circ},\;7.0^{\circ}$ inducers in the non-cavitating condition, head decreased linearly with flow rate, but head-flow rate curve had a dip at the flow coefficient ${\Phi}=0.065\;for\;6.1^{\circ}$ inducer. Rotating cavitation and cavitation surge were found in the $7.8^{\circ},\;7.0^{\circ}$ inducers in the cavitation tests. During the rotating cavitation one cell rotated at the same rotational speed as that of the inducer. The cavitation surge did not rotate and the oscillating frequency was $7{\sim}20\;Hz$. From the curve of the critical cavitation number versus flow rate, it was found that the steady cavitation performance of $6.1^{\circ}$ inducer was much lower than that of $7.8^{\circ},\;7.0^{\circ}$ inducers.

  • PDF