• Title/Summary/Keyword: rotating biological contactor

Search Result 42, Processing Time 0.024 seconds

Optimum stocking density of juvenile abalone, Haliotis discus hannai in recirculating culture system (순환여과 사육시스템에서 참전복의 적정 사육밀도)

  • 손맹현;조기채;김경길;전임기
    • Journal of Aquaculture
    • /
    • v.16 no.4
    • /
    • pp.257-261
    • /
    • 2003
  • The effects of different stocking densities on the growth of juvenile abalone, Haliotis discus hannai and water quality in the recirculating system with rotating biological contactor, were assessed. The trials were conducted using total weight 32 g juveniles abalone for 60 days at stocking densities of 5, 10, 15 kg/$m^2$. The animals were fed sufficient amounts of the pellet diet of 30.4% protein during the experimental period. Daily feeding rate (DFR) and survival rate (SR) of 5 kg/$m^2$ showed 0.76% and 85.5% those were not significantly differed 10 kg/$m^2$ showing 0.75% and 96.0% (P>0.05). DFR and SR of 15 kg/$m^2$ showing 0.38% and 31.2% were significantly lower than 5 and 10 kg/m2 (P<0.05). Daily growth rate (DGR) and feed efficiency (FE) showed the highest as 0.19% and 24.2% in 5 kg/$m^2$ the lowest as 0.05% and 14.3% in 15 kg/$m^2$ (P<0.05). According to, these results was an inverse relationship between growth and stocking density. The optimum density of juvenile abalone from this experiment is 5 to 10 kg/$m^2$ in the recirculating system.

Effects of Detention Time and Disc Speed on the Treatment Efficiencies of RBC (체류시간(滯留時間)과 원판회전속도(圓板回轉速度)가 회전원판생물막법(回轉圓板生物膜法)의 처리효율(處理効率)에 미치는 영향(影響))

  • Kim, Sang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.1-9
    • /
    • 1984
  • A mult-stage rotating biological contactor process was evaluated by using the mixtures of nightsoil and sewage as influent substrate. An emphasis was concentrated on the BOD removal efficiency at each stage of the process with respect to hydraulic detention times, rotating speeds of the disc and influent organic substrate concentrations. The results indicated that the process was found to be economically feasible when operated at hyduraulic detention time of 2 hours and disc rotating speed of 3 RPH. As to treatment efficiency, BOD removal efficiency of 40 to 50 percent could be obtained at the first stage regardless of influent organic substrate concentrations. The overall BOD removal efficiency of the process was found to be 88 to 90 percent at even high organic loading of $2.0kgBOD/m^3{\cdot}day$.

  • PDF

Effect of the Hydrophobicity and the Surface Roughness of Support Material on the Microbial Attachment (담체의 소수성과 표면 거칠기가 미생물 부착에 미치는 영향)

  • Park, Young-Seek;Suh, Jung-Ho;Song, Seung-Koo
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.689-696
    • /
    • 1997
  • This paper discussed effect of the surface roughness and the hydrophobicity of support material on the microbial attachment In a rotating biological contactor. The by- drophoblclty of each support material was determined by the measurement of contact angle of water and the surface roughness was measured by the surface roughness In- strument. Microorganisms have well attached on the surface of more hydrophilic support material like Nylon6 than that of the hydrophobic support material like PE. When the relatively hydrophilic surface was roughen, the microbial attachment was increased but when the relatively hydrophobic surface was roughen, the attachment was slightly In- creased because the hydrophobicity of support material was Increased by roughening the hydrophobic surface. Although both variables, the surface hydrophobicity and the surface roughness, have Influenced the microbial attachment, the influence of the surface roughness overruled that of the surface hydrophobicity. Support material whose surfaces were roughened about 1mm, 6mm and 11mm were allowed for attached 3, 7 and 24hr, but the differences of maximum and minimum attachment of each material gave nearly constant values and similar trend with time.

  • PDF

Comparison of Bacterial Numbers and Treatment Efficiencies in Bioreactors of Various Advanced Wastewater Treatment Processes (다양한 고도폐수처리공정에서의 생물반응조 세균수와 처리효율과의 비교)

  • Sung, Gi Moon;Cho, Yeon-Je;Kim, Sung Kyun;Park, Eun Won;Yu, Ki Hwan;Lee, Sang-Hyeon;Lee, Dong-Geun;Park, Seong Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.329-334
    • /
    • 2009
  • Bacterial numbers, such as endospore-formers, and treatment efficiencies were investigated for Rotating Activated Bacillus Contactors (RABC) and other advanced wastewater treatment processes including anaerobic-anoxic-oxic (A2O), sequencing batch reactor (SBR) and biological aerated filter (BAF). Endospore-forming bacterial numbers in the RABC showed 129-fold higher levels than those of the existing advanced systems. RABC process demonstrated the highest bacterial numbers in its bioreactors (paired t-test, p<0.01). RBC biofilms and aeration tanks of the RABC system showed 131- and 476-fold higher than other existing advanced processes, respectively. Mean treatment efficiencies of the existing systems were 83.5% for chemical oxygen demand (COD), 59.1% for total nitrogen (TN) and 76.8% for total phosphorus (TP). However, RABC process removed 96.9% for COD, 96.9% for TN and 91.9% for TP for highly concentrated food wastewater (COD>1,500 mg/L, TN>150 mg/L, TP>50 mg/L). Treatment efficiency was significantly reduced when the numbers of Bacillus genus in the bioreactors decreased below $10^6CFU/mL$. The automated RABC (A-RABC), in which dissolved oxygen concentrations are automatically controlled, showed higher treatment efficiencies compared to the RABC process. The RABC system maintained sufficient bacterial numbers for the effective treatment of highly concentrated food wastewater. Moreover, final effluent was in agreement to water quality standards.

Characteristics and Biological Kinetics of Nitrogen Removal in Wastewater using Anoxic-RBC Process (무산소-RBC 공정을 이용한 질소제거 특성 및 동력학적 인자 도출)

  • 최명섭;손인식
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1085-1093
    • /
    • 2003
  • This study was conducted to investigate anoxic-RBC (rotating biological contactor) and its application in advanced municipal wastewater treatment process to remove biologically organics and ammonia nitrogen. Effluent COD and nitrogen concentration increased as the increase of volumetric loading rate. But, the concentration changes of NO$_2$$\^$-/ -N and NO$_3$$\^$-/ -N were little, as compared to COD and NH$_4$$\^$+/ -N. When the volumetric loading rate increased, COD removal efficiency and nitrification appeared very high as 96.7∼98.8% and 92.5∼98.8%, respectively. However, denitrification rate decreased to 76.2∼88.0%. These results showed that the change of volumetric loading rate affected to the denitrification rate more than COD removal efficiency or nitrification rate. The surface loading rates applied to RBC were 0.13~6.0lg COD/㎡-day and 0.312∼1.677g NH$_4$$\^$+/-N㎡-day and they were increased as the increase of volumetric loading rate. However, the nitrification rate showed higher than 90%. The thickness of the biofilm in RBC was 0.130 ∼0.141mm and the density of biofilm was 79.62∼83.78mg/㎤. They were increased as surface loading rate increased. From batch kinetic tests, the k$\_$maxH/ and k$\_$maxN/ were obtained as 1.586 g C/g VSS-day, and 0.276 g N/g VSS-day, respectively. Kinetic constants of denitrifer in anoxic reactor, Y, k$\_$e/, K$\_$s/, and k were 0.678 mg VSS/mg N, 0.0032 day$\^$-1/, 29.0 mg N/l , and 0.108 day$\^$-l/, respectively. P and K$\_$s/, values of nitrification and organics removal in RBC were 0.556 g N/㎡-day and 18.71 g COD/㎡-day, respectively.

Characteristics and Phenol Wastewater Treatment of Aerobic Biofilm Reactor Used Rhodococcus sp. EL-GT and Sludge (Rhodococcus sp. EL-GT와 Sludge를 이응한 호기성 생물막 반응기의 특성 및 페놀 처리)

  • Park, Geun-Tae;Won, Seong-Nae;Cho, Sun-Ja;Son, Hong-Joo;Lee, Geon;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.553-560
    • /
    • 2002
  • The research was performed to compare to the biofilm characteristics and phenol removal efficiency in RBCs(Rotating Biological Contactor) using Rhodococcus sp. EL-GT(single population) and activated sludge(mixed population) as inoculum. Both reactors showed similar tendency on variations of dry weight, thickness and dry density of biofilm. However, the growth of biofilm thickness in 3 and 4 stage of single population reactor has sustained longer than that of the mixed population reactor. Unlike the mixed population reactor, the dry density of biofilm in the single population reactor had a difference between 1, 2 stage and 3, 4 stage. The single population reactor was stably operated without the decrease of phenol removal efficiency in the range of pH 6 ~ 9 and 15mM phenol was completely degraded in these pH ranges. But in case of the mixed population reactor, the phenol degradability was dramatically decreased at over 5mM phenol concentration because of the overgrowth and detachment of its biofilm.

Development of a Rotating Biological Contactor(RBC) Process for the Advanced Wastewater Treatment (회전원판(回轉圓板) 생물막(生物膜) 공법(工法)을 이용한 하(下)·폐수(廢水)의 고도처리(高度處理) 공정(工程) 개발(開發))

  • Kim, Eung Ho;Park, Jae Lo;Yoon, Jung Ro
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.2
    • /
    • pp.1-11
    • /
    • 1994
  • This study was conducted to develop a new RBC process available for the effective removal of organic matters and nitrogen in sewage. The RBC process for the oxidation organic compounds and nitrification was designed to occur at the 1st-stage and next-stage RBC respectively. Then nitrified water was recycled to the denitrifying RBC located at the lower part of the 1st-stage RBC. Some results were summarized as follows. 1. The loading limitation was represented as $60g{\cdot}COD/gm^2/day$ in experiment of simultaneous removal of organic matter and nitrogen. The maxmum COD % removal was 85% at the load $35g{\cdot}COD/m^2/day$. 2. The $NO_3-N$ % removal was approximately 80% at the load $60g{\cdot}COD/m^2/day$ and the maximum $NO_3-N$ remaval rate was $3.9g{\cdot}COD/m^2/day$ and the overall C/N ratio of 11.0 as required to achive 80% of $NO_3-N$% removal. 3.$NO_3-N$ removal rate was rapidly decreased above the load $7g{\cdot}NH_4{^+}-N/m^2/day$ and the maximum $NO_3-N$ removal rate was $3.7g{\cdot}NO_3-N/m^2/day$. 4. Irrespective of the recycle ratio, the COD % removal at the system of 2-stage RBC unit was nearly constant as 89% while the maximum one in the 1st-stage unit was 77% in the case of 50% recycle. 5. The maximum COD % removal in the 3-stage RBC system was 93% while 1st-stage one being 80%, under the $NH_4{^+}-N$ load of $7.4g/m^2{\cdot}d$. Also maximum percentage of nitrification and denitrification was 69% and 41% respectively, under the same $NH_4{^+}-N$ load.

  • PDF

Characteristics of Wastewater Treatment in Applying RBC Modified Dephanox Process (회전원판법을 적용한 Modified Dephanox 공정의 하수처리특성)

  • Kang, Min-Koo;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.477-486
    • /
    • 2010
  • This study was performed with the object in which it improves the nitrification by using RBC, that is one of the biological waste water treatment process. By applying the Modified Dephanox process to RBC in this research in order to evaluate the improvement of the nitrification by RBC a research was conducted. There is the most conspicuous feature of the process of using RBC. it is that the nitrification can be smoothly performed even if the suspended solid of the high concentration as the interference factor in the nitrification tank is flowed in. Moreover, as a result of experiment, TCOD removal efficiency of the process showed up more than about 90%. when influent TCOD loading rate was 0.04~0.1 kg / $day{\cdot}m^3$. and T-N removal efficiency is high at about 75% in spite of the process operating of the laboratory scale was observed. Also, As increasing influent ${PO_4}^{3-}$-P, T-P loading rate, ${PO_4}^{3-}$-P, T-P removal efficiency was increased. Finally, it was elucidated that the utilization of RBC in external nitrification system resulted in not only high nitrification performance but also stable system operation by minimizing inhibitory effect of overflowed suspended solid (SS).

Removal of organic Carbon, Nitrogen and Phosphorus in Wastewater based on tapered Aeration with Bacillus sp. (점감포기에 의한 바실러스 특성을 이용한 폐수의 유기물질 및 질소, 인 처리에 관한 연구)

  • Kim, Pan-Soo;Lee, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.861-866
    • /
    • 2007
  • This study was conducted to investigate an aeration tank with RBC process attached Bacillus sp. known as a suitable microorganism for the removing of organic carbon, nitrogen and phosphorus. An aeration tank was based on tapered aeration because Bacillus sp. was well grown in this like environment conditions. The biofilm process with Bacillus sp. as an advanced treatment process could be a best technology for the prominent removal of organic carbon, nitrogen and phosphorus if the mechanism in the process is verified. The operation conditions of DO in the tapered aeration tank were maintained as $1.2{\sim}1.5mg/L$ in aeration tank1, as $0.3{\sim}0.5mg/L$ in aeration tank 2 and less than 0.2 mg/L in aeration tank 3, respectively. Lab-scale experiments were conducted, at room temperature, internal recycle rate was from 200% to 50% and returned sludge rate was from 100% to 50%. As a result, concentration of organic carbons, nitrogen and phosphorus in Period 1 (the time of Bacillus sp. adapted to environment) were decreased gradually. Ultimately, each removal rate in this biological experiment were TCODCr 94%, BOD 87%, T-N 85%, T-P 89% in Period 2. Hence, this process showed an excellent performance of the removal of organic carbon, nitrogen and phosphorus and this is an effective system fur treating of wastewater.

  • PDF

Characteristics of $NH_3$-N removal in nitrification reactor according to organic loading rate (질산화 반응조에서 유기물 부하에 따른 암모니아 제거 특성)

  • Kang, Min-Koo;Kim, Keum-Yong;Kim, Seung-Ha;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.3
    • /
    • pp.7-15
    • /
    • 2009
  • The objective of this study was to investigate difference in nitrogen, organic, phosphorus and $NH_3$-N removal efficiency according to organic loading, comparing M-DEPHANOX process which has two nitrification reactor with M-eBNR process which has one nitrification reactor. As a result of this study, $NH_3$-N removal efficiency of M-DEPHANOX and M-eBNR resulted in average level of 91.8%, 96.9%, respectively. M-DEPHANOX and M-eBNR processes showed high removal efficiency in view of $NH_3$-N removal efficiency. Comparing organic removal efficiency by M-DEPHANOX and M-eBNR processes, the average removal efficiency in terms of TCOD, SCOD was 84.1%, 78.2% and 83.4%, 75.6%. Also, the results that observed about $NH_3$-N removal efficiency regarding organic loading revealed that nitrification reactor of RBC type are little influenced by flowing organic without precipitating at settling tank. Therefore, although inflow characteristics of municipal wastewater changes, M-eBNR process appeared to remove $NH_3$-N reliably.