The transport systems for metals play crucial roles in both the physiological functions of essential metals and the toxic effects of hazardous metals in mammals and plants. In mammalian cells, Zn transporters such as ZIP8 and ZIP14 have been found to function as the transporters for Mn(II) and Cd(II), contributing to the maintenance of Mn homeostasis and metallothionein-independent transports of Cd, respectively. In rice, the Mn transporter OsNramp5 expressed in the root is used for the uptake of Cd from the soil. Japan began to cultivate OsNramp5 mutant rice, which was found to accumulate little Cd, to prevent Cd accumulation. Inorganic trivalent arsenic (As(III)) is absorbed into mammalian cells via aquaglyceroporin, a water and glycerol channel. The ortholog of aquaporin in rice, OsLsi1, was found to be an Si transporter expressed in rice root, and is responsible for the absorption of soil As(III) into the root. Since rice is a hyperaccumulator of Si, higher amounts of As(III) are incorporated into rice compared to other plants. Thus, the transporters of essential metals are also utilized to incorporate toxic metals in both mammals and plants, and understanding the mechanisms of metal transports is important for the development of mitigation strategies against food contamination.
Kim, Kwon-Rae;Owens, Gary;Naidu, Ravi;Kwon, Soon-Ik;Kim, Kye-Hoon
Korean Journal of Environmental Agriculture
/
v.28
no.2
/
pp.146-157
/
2009
The influence of Pb-citrate complex formation on Pb uptake and the effect of Pb on organic acid exudation were investigated using four plant species, viz., sunflower (Helianthus annuus L), Indian mustard (Brassica juncea), canola (Brassica napus) and vetiver grass (Vetiveria zizanioides) under hydroponic conditions. Seedlings were exposed to different levels of Pb and Pb-citrate for 24 hrs and subsequently Pb distributions in plant shoot, root and hydroponic solution were measured. The dissolved organic carbon (DOC) concentration generally decreased as the concentration of Pb in the hydroponic solution increased. In contrast to DOC, the total organic acid concentrations exuded from Indian mustard roots significantly increased (424 to 6656 mg $kg^{-1}$) with increased Pb treatment, implying that exuding organic acids were involved in Pb accumulation in Indian mustard. The complexation of Pb with citrate enhanced Pb accumulation in the above ground portions. Lead concentration in Indian mustard increased from 2.05 mg $kg^{-1}$ to 6.42 mg $kg^{-1}$ when the concentration of citrate in solution increased from 0 to 50 mg $L^{-1}$. This result showed enhanced translocation of Pb from root to shoot with observation of transfer coefficient ($K_t$) increase from 2.03E-3 to 5.72E-3.
Proctor, John T.A.;Palmer, John W.;Follett, John M.
Journal of Ginseng Research
/
v.34
no.3
/
pp.175-182
/
2010
North American ginseng seedlings (Panax quinquefolius L.) were grown in pots in heated greenhouses, in a cool greenhouse, or in the field, in 11 experiments at various times over 16 years. Crop establishment, dry matter partitioning, photosynthesis, radiation use efficiency and carbon budget were measured and/or calculated in some years. Once the seedling canopy, of about $20\;cm^2$ per seedling, and a leaf area index of 0.37, was established, about 40 days after germination, full canopy display lasted about 87 days. Only 16.6% of the incoming solar radiation was intercepted by the crop, the remainder falling on the mulched soil surface. Total and root dry matter accumulations in the cool greenhouse and in the field were about double that in the heated greenhouses. Partitioning of dry matter to roots (economic yield or harvest index) in the cool greenhouse and in the field was 73% whereas it was 62.5% in the heated greenhouses. The relationship between root dry matter and radiation interception during the full canopy period was linear with growth efficiencies of $2.92\;mg\;MJ^{-1}$ at 4.8% of incoming radiation and $0.30\;mg\;MJ^{-1}$ at 68% of incoming radiation. A photosynthetic rate of $0.39\;g\;m^{-2}\;h^{-1}$ was attained at light saturation of about $150\;{\mu}mol\;m^{-2}\;s^{-1}$ (7.5% of full sunlight); dark respiration was $0.03\;g\;m^{-2}\;h^{-1}$, about 8.5% of maximum assimilation rate. Estimates of dry matter accumulation by growth analysis and by $CO_2$ uptake were similar, 6.21 vs. 7.62 mg $CO_2$, despite several assumptions in $CO_2$ uptake calculations.
A dynamic compartment model was developed to evaluate the transport of accidently released radionuclides onto rice-fields. In the model, the surface water compartment and shoot-base absorption were introduced to account for the effect of irrigation, which is essential to a rice cultivation. The soil mixing by plough and irrigation before transplanting rice was also considered, and the rate of root-uptake and shoot-base absorption were modeled in terms of the function of biomass. In order to test the validation of the model, it was applied to the analysis of some simulated $^{137}Cs$ deposition experiments that were performed while cultivating rice in a greenhouse using soils sampled from rice-fields around Kori, Yonggwang and Ulchin nuclear power plants. The model prediction was generally agreed within about one order of magnitude with experimental data.
To select a suitable indigenous plant for the phytoremediation of TNT contaminated soil, eight representative species of native grasses were tested to identify TNT toxicity thresholds. The threshold was determined based on various factors including cumulative seed germination, root and shoot length, fresh biomass, and the amount of water uptake under various TNT concentrations. Phytotoxic effect of TNT on plants was increased with the increase in TNT concentration but the degree was varied between grass species. Concentrations up to 60-80mgTNT/liter did not affect germination of Abutilion avicennae, Echinochioa crusgalli var. frumentacea, and Aeschynomene indica. Phytotoxicity threshold inhibition (50%) of Abutilion avicennae, schinochioa crusgalli var. frumentacea, Aeschynomene indica were 5-40mgTNT/liter for root length, 50-73mg TNT/Liter for shoot length and 68-99mgTNT/Liter for fresh biomass during 14 days of seedling exposure. Root and shoot growth as well as fresh biomass decreased as TNT concentration increased. In addition, the amount of water uptake decreased with increasing TNT concentration in Abutilion avicennae and Aeschynomene indica. Comparison of toxicity thresholds for the tested grass species showed that sensitivity of plants to TNT was in the order of root length > shoot length > fresh biomass > germination rate. From these results, we concluded that Abutilion avicennae and Aeschynomene indica had tolerance to TNT among the species tested.
Many plant growth-promoting rhizobacteria (PGPRs) have been known for beneficial effects on plants including biological control of soilborne pathogens, induced systemic resistance to plant pathogens, phytohormone production, and improvement of nutrient and water uptake of plants. We developed a simple and rapid method for screening potential PGPR, especially phytohormone producing rhizobacteria, or for analyzing their functions in plant growth using cucumber seedling cuttings. Surface-sterilized cucumber seeds were grown in a plastic pot containing steamed vermiculite. After 7 days of cultivation, the upper part 2 cm in length of cucumber seedling, was cut and used as cucumber cuttings. The base of cutting stem was then dipped in a microcentrifuge tube containing 1.5ml of a bacterial suspension and incubated at $25^{\circ}C$ with a fluorescent light for 10 days. Number and length of developed adventitious roots from cucumber cuttings were examined. The seedling cuttings showed various responses to the isolates tested. Some isolates resulted in withering at the day of examination or in reduced number of roots developed. Several isolates stimulated initial development of adventitious roots showing more adventitious root hair number than that of untreated cuttings, while some isolate had more adventitious root hair number and longer adventitious roots than that of untreated control. Similar results were obtained from the trial with rose cuttings. Our results suggest that this bioassay method may provide a useful way for differentiating PGPR's functions involved in the development of root system.
Background: Electrical conductivity (EC) and pH are important features of nutrient solution, affecting both growth and quality of crops by altering nutrient uptake. Methods and Results: The pH values of nutrient solutions were controlled at 5.0, 5.5, 6.0, 6.5 and EC values were controlled at 0.68, 0.84, 1.23, 1.41 dS/m. Gingesng root weights were higher during the initial growth period when the plants were treated with low pH and low EC nutrient solutions. However, the higher pH and EC levels, the greater the increase in the rate of root weight between the initial and middle growth periods. The highest ginsenoside amount changed during growth period. The total ginsenoside amount was highest in the root, and the lowest in leaves at 45 and 90 days after treatment, respectively, with solution at a pH of 6.0. After 135 days of treatment, the highest total ginsenoside amount was detected in root treated with soluton with EC values of 1.23 dS/m. Conclusions: For the cultivation of ginseng using a nutriculture system, the pH and EC values of nutrient solutions should to be controlled based on the stage of growth and targeted plant organ (root or leaves).
Kim, Sang-Gon;Wang, Yiming;Lee, Chang-Hoon;Chi, Yong-Hun;Kim, Keun-Ki;Choi, In-Soo;Kim, Yong-Chul;Kang, Kyu-Young;Kim, Sun-Tae
Korean Journal of Environmental Agriculture
/
v.30
no.4
/
pp.395-401
/
2011
BACKGROUND: Potassium (K) is one of the macronutrients which are essential for plant growth and development. Its deficiency in paddy soils is becoming one of the limiting factors for increasing rice yield in Asia. METHODS AND RESULTS: To investigate physiological symptoms under K-starvation (NP) compared with complete media (NPK) condition, we measured shoot/root length, weight, nutrients, and patterns of protein expression. The shoot growth was significantly reduced, but root growth was not affected by K-starvation. However, biomasses were decreased in both shoot and root. Uptake of K was reduced up to 85%, while total concentrations of P, Ca, Mg, Na were increased in root and shoot. To better understand the starved K mechanism of rice, comparative proteome analysis for proteins isolated from rice leaves was conducted using 2-DGE. Five spots of differentially expressed proteins were analyzed by MALDI-TOF MS. Analysis of these K-starvation response proteins suggested that they were involved in metabolism and defense. CONCLUSION(s): Physiological and 2-DGE based proteomics approach used in our study results in observation of morphology or nutrients change and identification of K-starvation responsive proteins in rice root. These results have important roles in maintaining nutrient homeostasis and would also be useful for further characterization of protein function in plant K nutrition.
Kyoung Rok Geem ;Jaewook Kim ;Wonsil Bae ;Moo-Geun Jee ;Jin Yu ;Inbae Jang;Dong-Yun Lee ;Chang Pyo Hong ;Donghwan Shim;Hojin Ryu
Journal of Ginseng Research
/
v.47
no.3
/
pp.469-478
/
2023
Background: Nitrogen (N) is an essential macronutrient for plant growth and development. To support agricultural production and enhance crop yield, two major N sources, nitrate and ammonium, are applied as fertilizers to the soil. Although many studies have been conducted on N uptake and signal transduction, the molecular genetic mechanisms of N-mediated physiological roles, such as the secondary growth of storage roots, remain largely unknown. Methods: One-year-old P. ginseng seedlings treated with KNO3 were analyzed for the secondary growth of storage roots. The histological paraffin sections were subjected to bright and polarized light microscopic analysis. Genome-wide RNA-seq and network analysis were carried out to dissect the molecular mechanism of nitrate-mediated promotion of ginseng storage root thickening. Results: Here, we report the positive effects of nitrate on storage root secondary growth in Panax ginseng. Exogenous nitrate supply to ginseng seedlings significantly increased the root secondary growth. Histological analysis indicated that the enhancement of root secondary growth could be attributed to the increase in cambium stem cell activity and the subsequent differentiation of cambium-derived storage parenchymal cells. RNA-seq and gene set enrichment analysis (GSEA) revealed that the formation of a transcriptional network comprising auxin, brassinosteroid (BR)-, ethylene-, and jasmonic acid (JA)-related genes mainly contributed to the secondary growth of ginseng storage roots. In addition, increased proliferation of cambium stem cells by a N-rich source inhibited the accumulation of starch granules in storage parenchymal cells. Conclusion: Thus, through the integration of bioinformatic and histological tissue analyses, we demonstrate that nitrate assimilation and signaling pathways are integrated into key biological processes that promote the secondary growth of P. ginseng storage roots.
During a 35-day growth cycle, N, P, and K uptake was determined by measuring changes in their contents in culture solutions. At harvest, plants were separated into the roots, base organs and shoot, and dried for tissue analysis for N, P, and K. The uptake rates of N, P, and K followed cyclical patterns that was related to shoot development and harvest, but were independent of the transpiration rate. Uptake of N declined from 5.6 mmol $plant^{-1}$$day^{-1}$ just prior to the cycle initiation to 4.0 mmol $plant^{-1}$$day^{-1}$ at day 15. Uptake rate steadily increased as flower stems reached maturity up to 10.3 mmol $plant^{-1}$$day^{-1}$ day 35. Uptakes rates of P and K followed similar patterns of N uptake. Tissue concentrations of N and P steadily decreased since day 15. Content of K was the lowest at day 20 and steadily increased thereafter. In the root tissue, N and K contents were the lowest at day 15, increased to day 30, and then decreased at day 35. Tissue P content was just a reverse of those of N and K.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.