Change in Uptake and Tissue Contents of N, P, and K at Different Growth Stages in Hydroponically-Grown Cut Roses

양액재배 절화장미의 생육단계별 N, P, K 흡수 및 체내성분 함량의 변화

  • 최경이 (원예연구소 시설원예시험장) ;
  • 조명환 (원예연구소 시설원예시험장) ;
  • 서태철 (원예연구소 시설원예시험장) ;
  • 노미영 (원예연구소 시설원예시험장) ;
  • 이한철 (원예연구소 시설원예시험장) ;
  • 이시영 (원예연구소 시설원예시험장)
  • Published : 2008.12.31

Abstract

During a 35-day growth cycle, N, P, and K uptake was determined by measuring changes in their contents in culture solutions. At harvest, plants were separated into the roots, base organs and shoot, and dried for tissue analysis for N, P, and K. The uptake rates of N, P, and K followed cyclical patterns that was related to shoot development and harvest, but were independent of the transpiration rate. Uptake of N declined from 5.6 mmol $plant^{-1}$ $day^{-1}$ just prior to the cycle initiation to 4.0 mmol $plant^{-1}$ $day^{-1}$ at day 15. Uptake rate steadily increased as flower stems reached maturity up to 10.3 mmol $plant^{-1}$ $day^{-1}$ day 35. Uptakes rates of P and K followed similar patterns of N uptake. Tissue concentrations of N and P steadily decreased since day 15. Content of K was the lowest at day 20 and steadily increased thereafter. In the root tissue, N and K contents were the lowest at day 15, increased to day 30, and then decreased at day 35. Tissue P content was just a reverse of those of N and K.

이전 수확으로부터 다음 수확기까지 35일 동안 생육 단계별 장미의 양분 흡수와 식물체내 재분배 및 이동 양상을 구명하여 수경재배 시 생육단계별 급액관리 기준을 마련하고자 본 시험을 수행하였다. 양분의 흡수는 증산량에 관계없이 작물의 생장단계에 따라서 다른 특성을 나타내었다. 주당 1일 N의 흡수는 생육초기 5.6mmol에서 감소하여 15일째에는 4.0mmol로 최소가 된 이후, 점차 증가하며 35일째에는 10.3mmol로 증가하였다. 묵은 지상부 조직의 N과 P 농도는 15일 이후 점차 감소하였으며, K는 20일에 최소가 되었다가 점차 증가하는 경향이었다. 뿌리에서는 N과 K는 15일에 최소가 되었다가 30일에 최대가 되었다가 35일째는 감소하였다. P는 N과 K의 농도 변화와 거의 반대 패턴이었다.

Keywords

References

  1. Bass, R., and D. van den Berg. 2004. Limiting nutrient emission from a cut rose closed system by highflux irrigation and low nutrient concentrations. Acta Hort. 644:39-46
  2. Bernstein, L. 1964. Salinity and roses. Am. Rose Ann. 49:120-124
  3. Bougoul, S., R. Brun, and A. Jaffein. 2000. Nitrate absorption-concentration of Rosa hibrida cv. Sweet Promise grown in soiless culture. Agronomie 20:165- 174 https://doi.org/10.1051/agro:2000117
  4. Cabrera, R.I., R.Y. Evans, and J.L. Paul. 1995a. Cyclic nitrogen uptake by greenhouse roses. Sci. Hortic. 63:57-66 https://doi.org/10.1016/0304-4238(95)00789-V
  5. Cabrera, R.I., R.Y. Evans, and J.L. Paul. 1995b. Nitrogen partitioning in rose plants over flowering cycle. Sci. Hortic. 63:67-76 https://doi.org/10.1016/0304-4238(95)00790-Z
  6. Gato, T. 1994. Cut flower soilless culture. Nongmonhyup. p. 143-144
  7. Gilliam, C.H. and R.D. Wright. 1978. Timing of fertilizer application in relation to growth flushes of 'Helleri' holly (Ilex crenata Thunb.). HortScience 13:300- 301
  8. Hoagland, D.R. and D.I. Arnon. 1950. The water-culture method for growing plants without soil. In Circ. 347, California Agricultural Experiment Station, University of California. p. 32
  9. Kim, W.S., M.Y. Roh, and J.H. Lieth. 2005. Modeling root growth of cut roses over flowering cycles. Kor. J. Hort. Sci. Technol. 23(Suppl):107
  10. Mertens, W.C. and R.D. Wright. 1978. Root and shoot growth rate relationships of two cultivars of Japanese holly. J. Amer. Soc. Hort. Sci. 103:722-724
  11. Salisbury, F. and C. Ross. 1994. Plant physiology. 4th ed. Cell: Water, solution, and surfaces. p. 137
  12. Sonneveld, C. and N. Straver. 1992. Nutrient solutions for vegetables and flowers grown in water or substrates. Voedingsoplossingen glastuninbouw. No. 8. p. 15