• Title/Summary/Keyword: root system development

Search Result 430, Processing Time 0.026 seconds

Comparison of Angelica Species Roots Using Taste Sensor and DNA Sequencing Analysis (미각센서와 DNA 염기서열을 이용한 당귀류 비교)

  • Kim, Young Hwa;Choi, Goya;Lee, Hye Won;Lee, Gwan Ho;Chae, Seong Wook;Kim, Yun Hee;Lee, Mi Young
    • The Korea Journal of Herbology
    • /
    • v.27 no.6
    • /
    • pp.37-42
    • /
    • 2012
  • Objectives : Angelica Gigantis Radix is prescribed as the root of different Angelica species on the pharmacopoeia in Korea, Japan and China. Chemical components and their biological activities were also different according to their species. A study for the development of simple method to compare Angelica roots was needed. In order to classify them, the methods such as DNA sequencing analysis and taste sensor were applied to three Angelica species like Angelica gigas, Angelica acutiloba and Angelica sinensis. Methods : PCR amplification of intergenic transcribed spacer (ITS) region was performed using ITS1 and ITS4 primer from nine Angelica roots, and then nucleotide sequence was determined. Taste pattern of samples were measured using the taste-sensing system SA402B equipped with a sensing unit, which consists of artificial lipid membrane sensor probes of anionic bitterness, astringency, saltiness, umami, and cationic bitterness (C00, AE1, CT0, AAE, and AN0, respectively). Results : As a result of comparing the similarity of the ITS region sequences, A. sinensis was discriminated from the others (A. gigas and A. acutiloba). Equally this genetic result, A. gigas and A. acutiloba showed similar taste pattern as compared to A. sinensis. Sourness, bitterness, aftertaste of bitterness, astringency, and aftertaste of astringency of A. sinensis were significantly high as compared with A. gigas and A. acutiloba. In contrast, richness was significantly low. Conclusions : These taste pattern can be used as a way of comparison of Angelica species and this technic could be applied to establish a taste pattern marker for standardization of herbs in various purposes.

A Study on Consumer Emotion for Social Robot Appearance Design: Focusing on Multidimensional Scaling (MDS) and Cluster Analysis (소셜 로봇 외형 디자인에 대한 소비자 감성에 관한 연구: 다차원 척도법 (MDS)과 군집분석을 중심으로)

  • Seong-Hun Yu;Ji-Chan Yun;Junsik Lee;Do-Hyung Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.397-412
    • /
    • 2023
  • In order for social robots to take root in human life, it is important to consider the technical implementation of social robots and human psychology toward social robots. This study aimed to derive potential social robot clusters based on the emotions consumers feel about social robot appearance design, and to identify and compare important design characteristics and emotional differences of each cluster. In our study, we established a social robot emotion framework to measure and evaluate the emotions consumers feel about social robots, and evaluated the emotions of social robot designs based on the semantic differential method, an kansei engineering approach. We classified 30 social robots into 4 clusters by conducting a multidimensional scaling method and K-means cluster analysis based on the emotion evaluation results, confirmed the characteristics of design elements for each cluster, and conducted a comparative analysis on consumer emotions. We proposed a strategic direction for successful social robot design and development from a human-centered perspective based on the design characteristics and emotional differences derived for each cluster.

A Study on the Food-culture's Property of the Traditional Generation through the Oral Interview (구술을 통한 전통세대의 음식문화특성 연구)

  • Kim, Mi-Hye;Chung, Hae-Kyung
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.6
    • /
    • pp.613-630
    • /
    • 2009
  • This thesis, which involves honest life stories of members of the ìtraditionalî Korean generation that lived through the turbulent times of the first half of the twentieth century, assesses the meaning and import of Korean cuisine during an individual Korean's lifetime, as well as the relevant properties of the culinary culture of the traditional generation and how those properties continue to influence the present generation of Koreans. Thus, traditional Korean culinary culture was subdivided into the following four aspects, each of which were exemplified by representative examples. The first of these is slow-food dietary life, which is exemplified by fermented foods. The development of side dishes (panchan) based on fermentation - kimchi, different types of soy and bean paste, salted seafoods, dishes of dried radish or cucumber slices seasoned with soy sauce, and so on - made the quantitative and qualitative supplementation of food possible for traditional Koreans. The second of these aspects, referred to as friendly dietary life, is exemplified by self-sufficiently produced foods. The system of many species and small production suitable with the season made it possible to produce food from sustainable ecological systems and to maintain locally grown food-cultures, each of which was distinguished from others by a local specialty product. The third aspect of the traditional Korean culinary culture involves the same use of medicinal roots and plant materials for foodstuff, and this is exemplified by the use of foods to cure and prevent diseases. The notion, for example, that 'boiled rice is an invigorant' is characteristic of the notion that diet can function in a preventative medical context, and other similar Korean notions illustrate the importance, also, of the curative properties of food. The fourth and final aspect of traditional Korean culinary culture identified herein is creative dietary life, which can be viewed essentially as a Korean adaptation to the turbulence of life during the early $20^{th}$ century in Korea. This trend is exemplified by many Korean foods that were created in response to foreign influences, such as onions, cabbages, curry, etc. which found their place in overall Korean culture through the age of Japanese settlement, as well as the Korean war.

Effects of Hydrogen Peroxide on Germination and Early Growth of Sorghum (Sorghum bicolor) (과산화수소 처리가 수수의 발아 및 초기 생장에 미치는 효과)

  • Shim, Doobo;Song, Ki Eun;Park, Chan Young;Jeon, Seung Ho;Hwang, Jung Gyu;Kang, Eun-ju;Kim, Jong Cheol;Shim, Sangin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.140-148
    • /
    • 2018
  • As the global warming causing desertification increase, there is growing concern about damage of crops. It was to investigate how the treatment with hydrogen peroxide before leaf development affects the growth and yield of sorghum for minimizing a damage of crops to drought. The germination experiment was conducted at alternating temperature of $25^{\circ}C/20^{\circ}C$(12 hr/12 hr) under water stress condition of 0 ~ -0.20 MPa adjusted with PEG solution containing 0 and 10 mM $H_2O_2$. In order to know the effect of foliar application of hydrogen peroxide on the growth of sorghum, 10 mM hydrogen peroxide was treated to leaves at 3-leaf stage of sorghum growing in greenhouse conditions. Seed germination rate was increased by 20% in hydrogen peroxide treatment as compared to the Control. under water stress conditions (-0.15 ~ -0.20 MPa). The length of seedlings was also on the rise by the hydrogen peroxide treatment. In the greenhouse pot experiment, the morphological characteristics (plant height, stem diameter, leaf length, and leaf number) and physiological characteristics (chlorophyll content, chlorophyll fluorescence (Fv/Fm), stomatal conductance) were higher in the plants treated with hydrogen peroxide under the drought stress condition than those of plants of $H_2O$ treatment. Experiment conducted with the soil moisture gradient system showed that the foliar application of hydrogen peroxide increased photosynthetic ability of sorghum plant with respect to SPAD value and stomatal conductance and rooting capacity (root weight and root length) under drought condition. Generally, hydrogen peroxide treatment in sorghum increased the tolerance to drought stress and maintained better growth due to ameliorating oxidative stress.

Effect of Difference in Irrigation Amount on Growth and Yield of Tomato Plant in Long-term Cultivation of Hydroponics (장기 수경재배에서 급액량의 차이가 토마토 생육과 수량 특성에 미치는 영향)

  • Choi, Gyeong Lee;Lim, Mi Young;Kim, So Hui;Rho, Mi Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.444-451
    • /
    • 2022
  • Recently, long-term cultivation is becoming more common with the increase in tomato hydroponics. In hydroponics, it is very important to supply an appropriate nutrient solution considering the nutrient and moisture requirements of crops, in terms of productivity, resource use, and environmental conservation. Since seasonal environmental changes appear severely in long-term cultivation, it is so critical to manage irrigation control considering these changes. Therefore, this study was carried out to investigate the effect of irrigation volume on growth and yield in tomato long-term cultivation using coir substrate. The irrigation volume was adjusted at 4 levels (high, medium high, medium low and low) by different irrigation frequency. Irrigation scheduling (frequency) was controlled based on solar radiation which measured by radiation sensor installed outside the greenhouse and performed whenever accumulated solar radiation energy reached set value. Set value of integrated solar radiation was changed by the growing season. The results revealed that the higher irrigation volume caused the higher drainage rate, which could prevent the EC of drainage from rising excessively. As the cultivation period elapsed, the EC of the drainage increased. And the lower irrigation volume supplied, the more the increase in EC of the drainage. Plant length was shorter in the low irrigation volume treatment compared to the other treatments. But irrigation volume did not affect the number of nodes and fruit clusters. The number of fruit settings was not significantly affected by the irrigation volume in general, but high irrigation volume significantly decreased fruit setting and yield of the 12-15th cluster developed during low temperature period. Blossom-end rot occurred early with a high incidence rate in the low irrigation volume treatment group. The highest weight fruits was obtained from the high irrigation treatment group, while the medium high treatment group had the highest total yield. As a result of the experiment, it could be confirmed the effect of irrigation amount on the nutrient and moisture stabilization in the root zone and yield, in addition to the importance of proper irrigation control when cultivating tomato plants hydroponically using coir substrate. Therefore, it is necessary to continue the research on this topic, as it is judged that the precise irrigation control algorithm based on root zone-information applied to the integrated environmental control system, will contribute to the improvement of crop productivity as well as the development of hydroponics control techniques.

Development of Optimal Nutrient Solution of Tomato(Lycopercicon esculentum Mill.) in a Closed Soilless Culture System (순환식 수경재배에 적합한 토마토 배양액 개발)

  • Yu, Sung-Oh;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.203-211
    • /
    • 2005
  • The experiment was conducted to investigate the nutrition absorption pattern in the growth stages and develope the optimal nutrient solution hydroponically grown the tomato in closed substrate culture system with the nutrient solution of National Horticultural Research Station in Japan into 1/2S, 1 S, and 2S. When plant was grown in 1/2 S, the growth and yield were high and the pH and EC in the rooting zone were stable. Suitable composition of nutrient solution for tomato was $NO_3-N$ 7.1, $PO_{4}$-P 2.1, K 4.0, Ca 3.1, Mg 1.2, and $SO_{4}-S\;1.2\;me{\cdot}L^{-1}$ in the early growth stage and $NO_3-N$ 6.5, $PO_4-P$ 2.3, K 3.4, Ca 3.1, Mg 1.1, and $SO_4-S\;1.1\;me{\cdot}L^{-1}$ in the late growth stage by calculating a rate of nutrient and water uptake. To estimate the suitability for the nutrient solution of tomato in a development of optimum nutrient solution of tomato developed by Wonkwang university in korea (WU), plant was grown in perlite substrate supplied with different solution and strengths(S) by research station for greenhouse vegetable and floricultuin in the Netherlands (Proefstation voor tuinbouw onder glas te Naaldwijk; PTG) of 1/2 S, 1 S and 2 S, respectively, The growth was good at the PTG and WU of 2 S in early growth stage, and at the WU 2S in late growth stage. The highest yield of tomato obtained in the WU of 2 S, although blossom-end rot was appeared in all treatments. pH and EC in root zone of WU of 2 S were stable during the early and late growth stage. Therefore when plant was grown in WU of 2 S, N and P content in the nutrient solution need to low, according N and P content of their leaves were high in WU of 2 S.

Development of Efficient Screening Methods for Resistance of Tomato to Fusarium oxysporum f. sp. lycopersici (토마토 시들음병에 대한 효율적인 저항성 검정법 확립)

  • Park, Myung-Soo;Jeong, Bo-Ram;Jang, Kyoung-Soo;Choi, Yong-Ho;Kim, Jin-Cheol;Choi, Gyung-Ja
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.426-431
    • /
    • 2012
  • This study was conducted to establish an efficient screening method for resistant tomato to Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (FOL). The resistance degrees of the six commercial cultivars of tomato to the pathogen were evaluated by dipping roots of the seedlings in spore suspension of five FOL isolates. On the basis of the results, two cultivars (Dotaerangmaster, resistant cultivar to FOL race 1; Supersunload, resistant cultivar to FOL race 2) and two isolates (KACC40043, FOL race 2; TF104, FOL race 3) were selected for system establishment. The disease development of the FOL isolates on the cultivars according to several conditions including root wounding, incubation temperature, inoculum concentration and dipping period of roots in spore suspension was investigated. The resistance of each cultivar to the disease was a race-specific response and hardly affected by the tested conditions except for incubation temperature of $20^{\circ}C$. The optimum temperature for disease development caused by FOL was 25 to $30^{\circ}C$. On the basis of the results, we suggest that an efficient screening method for resistant tomato cultivars to Fusarium wilt is to dip the non-cut roots of tomato seedlings at two-leaf stage in spore suspension of $1{\times}10^7\;conidia{\cdot}mL^{-1}$ for 0.5 hours and transplant the seedling to plastic pot with horticulture nursery media, and then to cultivate the plants in a growth room at $25^{\circ}C$ for 3 weeks with 12 hours light a day.

The effects of aqueous extracts of plant roots on germination of seeds and growth of seedings (식물근의 추출물질이 종자발아 및 유식물의 생장에 미치는 영향)

  • Chan-Ho Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.4 no.1
    • /
    • pp.1-23
    • /
    • 1968
  • This study aimed at contributing to the improvement of cropping systems after finding out the effects of excrements and components of crop root influence on other crops as well as themselves. The following forage crops suitable for our country were selected for the present study. Aqueous extracts of fresh roots, aqueous extracts of rotting roots and aqueous solutions of excrements of red clover, orchard grass and brome grass were studied for the effects influencing the germination and growth of seedlings of red clover, ladino clover, lespedeza, soybean, orchard grass, Italian ryegrass, brome grass, barley, wheat, sorghum, corn and Hog-millet. In view of the possibility that the organic acid might be closely related to the excrements and components of crop root connected with soil sickness, the acid components of three species of roots were analysed by paper chromatography and gas chromatography method. The following results were obtained: 1. Effects of Aqueous Extracts of Fresh Roots : Aqueous extracts of red clover: The extracts inhibited the growth of seedlings of the ladino clover and lespedeza and also inhibited the development of most crops except that of sorghum among the Graminaceae. Aqueous extracts of orchard grass: The extracts promoted the seedlings growth of red clover and soybean, while it inhibited the germination and growth of orchard grass. There were no noticeable effects influencing other crops while it inhibited the growth of barley and Hog-millet. Aqueous extracts of brome grass: There was no effect on Italian ryegrass but there was an inhibiting effect on the other crops. 2. Effects of Aqueous Extracts of Rotting Roots : Aqueous extracts of red clover: The extracts promoted the seedling growth of red clover. But it reflected the inhibiting effects on other crops except sorghum. Aqueous extracts of orchard grass: The extracts promoted the growth of red clover, ladino clover, soybean and sorghun, while it inhibited the germination and rooting of barley and Hog-millet. Aqueous extracts of brome grass: The extracts gave the promotive effects to the growth of red clover, soybean and sorghum, but caused inhibiting effects on orchard grass, brome grass, barley and Hog-millet. 3. Effects of Aqueous Solutions of Excrements : The aqueous solution of excrements of red clover reflected the inhibition effects to the growth of Graminaceae, while the aqueous solutions of excrements of orchard grass and Italian ryegrass caused the promotive effects on the growth of red clover. 4. Results of Organic Acid Analysis : The oxalic acid, citric acid, tartaric acid, malonic acid, malic acid and succinic acid were included in the roots of red clover as unvolatile organic acid, and in the orchard grass and brome grass there were included the oxalic acid, citric acid, tartaric acid and malic acid. And formic acid was confirmed in the red clover, orchard grass and brome grass as volatile organic acid. In consideration of the results mentioned in above the effects of excrements and components of roots found in this studies may be summarized as follows. 1) The red clover generally gave a disadvantageous effect on the Graminaceae. Such trend was considered chiefly caused by the presence of many organic acids, namely oxalic, citric, tartaric, malonic, malic, succinic and formic acid. 2) The orchard grass generally gave an advantageous effect on the Leguminosae. This may be due to a few kinds of organic acid contained in the root, namely oxalic, citric, tartaric, malic and formic acid. Furthermore a certain of promotive materials for growth was noted. 3) As long as the root of brome grass are not rotten, it gave a disadvantageous effect on the Leguminosae and Graminaceae. This may be due to the fact that several unidentified volatile organic acid were also included besides the confirmed organic acid, namely oxalic, citric, tartaric, malic and formic acid. 5. Effects of Components in Roots to the Soil Sickness : 1) It was considered that the cause of alleged red clover's soil sickness did not result from the toxic components of the roots. 2) It was recognized that the toxic components of roots might be the cause of soil sickness in case the orchard grass and brome grass were put into the long-term single cropping. 6. Effects of Rooted Components to the Companion Crops in the Cropping System : a) In case of aqueous extracts of fresh roots and aqueous excrements (Inter cropping and mixed cropping) : 1) Advantageous combinations : Orchard grass->Red clover, Soybean, Italian ryegrass->Red clover, 2) Disadvantageous combinations : Red clover->Ladino clover, Lespedeza, Orchard grass, Italian ryegrass, Fescue Ky-31, Brome grass, Barley, Wheat, Corn and Hog.millet, Orchard grass->Lespedeza, Orchard grass, Barley and Hog-millet, Brome grass->Red clover, Ladino clover, Lespedeza, Soybean, Orchard grass, Brome grass, Barley, Wheat, Sorghum, Corn and Hog-millet, 3) Harmless combinations : Red clover->Red clover, Soybean and Sorghum, Orchard grass->Ladino clover, Italian ryegrass, Brome grass, Wheat, Sorghum and Corn, Brome grass->Italian ryegrass, b) In case of aquecus extracts of rotting roots(After cropping) : 1) Advantageous combinations : Red clover->Red clover and Sorghum, Orchard grass->Red clover, Ladino clover, Soybean, Sorghum, and Corn, Brome grass->Red clover, Soybean and Sorghum, 2) Disadvantageous combinations : Red clover->Lespedeza, Orchard grass, Italian ryegrass, Brome grass, Barley, Wheat, and Hog-millet Orchard grass->Barley and Hog-millet, Brome grass->Orchard grass, Brome grass, Barley and Hog-millet, 3) Harmless combinations : Red clover->Ladino clover, Soybean and Corn, Orchard grass->Lespedeza, Orchard grass, Italian ryegrass, Brome grass and Wheat Brome gass->Ladino clover, Lespedeza, Italian ryegrass and Wheat.

  • PDF

Development of Optimal Nutrient Solution for Tomato Substrate Culture in Closed System (토마토의 순환식 고형배지재배에 적합한 배양액 개발)

  • 최은영;이용범;김재영
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.43-54
    • /
    • 1998
  • This experiment was conducted to develop optimal nutrient solution for tomato plants, according to the plant growth stages in closed system. Perlite substrate was supplied with 1/2 and 1 strength of the solution of National Horticultural Research Station in Japan. Plants grew better and the nutrient_contents in the leaves were also proper in 1 strength. Based on these results, optimal nutrient solution in perlite was composed by n/w of 1 strength according to the plant growth rates : N 13.5, P 3.3, K 7.0, Ca 7.0, Mg 3.5 me.L$^{-1}$ in seedling stage, N 14.2, P 3.3, K 8.0, Ca 7.5, Mg 4.0 me.L$^{-1}$ in vegetative stage and N 10.0, P 3.0, K 7.0, Ca 6.0, Mg 3.0 me.L$^{-1}$ in reproductive stage. To examine the suitability of the nutrient solution developed in this experiment, tomato plants were grown in rockwool and supplied with two different composition and concentration of nutrient solution composed by n/w of 1 strength in perlite (SCUT) and by Research Station for Greenhouse Vegetable and Floriculture on the Netherlands (PBG). PH and EC in SCUT were changed little in 1 strength but a significant change of PH was shown in 1/2 strength. Later, drained solutions in rockwool were also analyzed according to the Plant growth stages. Low concentrations of N and P in root zone were shown in early growth stage but N was increased in reproductive stage, while, K, Ca, Mg concentration was consistent through the whole growth stage. Considering these results, we found that the rebalance of N and P was needed, that is, reduction of N concentration in reproductive stage and increasing of P concentration in vegetative stage.

  • PDF

A Development of Automation System and a Way to use Solar Energy System Efficiently in Greenhouse(1) - Study on temperature variation of soil heating in greenhouse - (시설원예용 태양열 시스템의 효율적 이용과 자동화 장치개발(1) - 시설재배시 지중가온의 온도변화 연구 -)

  • 김진현;김철수;명병수;최중섭;구건효;김태욱
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.15-24
    • /
    • 1998
  • The greenhouse temperature controls in general have been managed by the above-ground part environment, But the temperature of root zone was known very important factor for the 9rofth and the yield of vegetables in greenhouse. The purpose of this study is to develop a good method for cultivation using solar energy which can apply warming soil and to develop the greenhouse soil temperature automatic control system. Followings are summary of this study:1 When the greenhouse inner temperature changes were about 24$^{\circ}C$ during a day in October, the temperature of non-warmed soil was differenced 6$^{\circ}C$ in the depth 10cm and 3$^{\circ}C$ in the depth 20cm. 2. When water supply temperature was kept at 40, 50 and 6$0^{\circ}C$, the lowest soil temperature in the depth of 10cm is 2$0^{\circ}C$ and that of 20cm was 23$^{\circ}C$. and when the water supply temperature was over 4$0^{\circ}C$, the space heating temperature did not affect the temperature variation of soil. 3. In comparison with conditions of the warmed and non-warmed soil, when the water supply temperature is 28$^{\circ}C$, soil temperatures had the high temperature of 4$0^{\circ}C$~7$^{\circ}C$ in the depth of 10cm to 20 cm. 4. The line of boundary area was appeared in the depth of 15~20cm, 13~19cm and 12~17cm. when the water supply temperature was 4$0^{\circ}C$, 5$0^{\circ}C$ and 6$0^{\circ}C$. 5. When th inner greenhouse air temperature is maintained over 11$^{\circ}C$ and the water supply temperature is supported 28$^{\circ}C$, the lowest temperature is kept up over 2$0^{\circ}C$.

  • PDF