• Title/Summary/Keyword: root point

Search Result 631, Processing Time 0.044 seconds

Design of Square Root and Inverse Square Root Arithmetic Units for Mobile 3D Graphic Processing (모바일 3차원 그래픽 연산을 위한 제곱근 및 역제곱근 연산기 구조 및 설계)

  • Lee, Chan-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.20-25
    • /
    • 2009
  • We propose hardware architecture of floating-point square root and inverse square root arithmetic units using lookup tables. They are used for lighting engines and shader processor for 3D graphic processing. The architecture is based on Taylor series expansion and consists of lookup tables and correction units so that the size of look-up tables are reduced. It can be applied to 32 bit floating point formats of IEEE-754 and reduced 24 bit floating point formats. The square root and inverse square root arithmetic units for 32 bit and 24 bit floating format number are designed as the proposed architecture. They can operation in a single cycle, and satisfy the precision of $10^{-5}$ required by OpenGL 1.x ES. They are designed using Verilog-HDL and the RTL codes are verified using an FPGA.

Estimation of the relationship between below-ground root and above-ground canopy development by measuring dynamic change of soil ammonium-N concentration in rice

  • Fushimi, Erina;Yoshida, Hiroe;Tokida, Takeshi;Nakagawa, Hiroshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.183-183
    • /
    • 2017
  • In the early part of rice growth, root volume primarily limits the amount of plant-accessible nitrogen (N). Therefore, knowledge of the root development is important for modeling N uptake of rice. The timing when the volume of rhizosphere cover the whole soil is also important to carry out timely top dressing. However, information about initial root expansion and associated N uptake is limited due to intrinsic technical difficulties in assessing below-ground processes. Some studies, however, showed a close relationship between below-ground root and above-ground leaf development, suggesting a possibility that above-ground attributes could serve as surrogates for the root processes. In this study, we investigated the relationship between below-ground and above-ground development of rice. Field experiments were conducted where we cultivated Koshihikari (a leading cultivar in Japan) for four different cropping schedules in 2012. In 2016, Gimbozu (HEG4) and three flowering time mutant lines of Gimbozu (X61 (se13), HS276 (ef7), DMG9 (se13, ef7)) were examined for a single season. Experiments were performed with three replications in a completely randomized design. We monitored ammonium-N concentration ([NH4+-N]) in soil solution by repeatedly taking samples from a porous tubing (10-cm long) vertically inserted at the most distant point from surrounding rice hills. Samples were taken in triplicate (= triplicate tubes) and every three days from transplanting in each experimental unit. For above-ground attributes, leaf area index (LAI) was measured in 2012, whereas soil coverage ratio was estimated by image processing in 2016. Results showed that [NH4+-N] increased gradually after transplanting and then rapidly decreased from a certain day. This distinct drop in [NH4+-N] informed us the timing at which the rice root system reached the point of porous tubing and thus essentially covered the whole soil volume. The LAI at the dropping point was about 0.43 regardless of the cropping schedules in 2012 experiment. In 2016, the coverage ratio at the N dropping point was within the range of 0.12 to 0.19 for four genotypes having different growth durations. In addition, the coverage ratios at seven weeks after the transplanting showed a good correspondence to LAI across the four genotypes. We therefore conclude that both LAI and coverage ratio may serve as robust indicators for root development and might be useful to estimate the timing when the root system fully cover the soil volume. Results obtained here will also contribute to develop models that can predict not only above-ground canopy development but also associated below-ground processes.

  • PDF

A comparative study of three collocation point methods for odd order stochastic response surface method

  • Li, Dian-Qing;Jiang, Shui-Hua;Cheng, Yong-Gang;Zhou, Chuang-Bing
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.595-611
    • /
    • 2013
  • This paper aims to compare three collocation point methods associated with the odd order stochastic response surface method (SRSM) in a systematical and quantitative way. The SRSM with the Hermite polynomial chaos is briefly introduced first. Then, three collocation point methods, namely the point method, the root method and the without origin method underlying the odd order SRSMs are highlighted. Three examples are presented to demonstrate the accuracy and efficiency of the three methods. The results indicate that the condition that the Hermite polynomial information matrix evaluated at the collocation points has a full rank should be satisfied to yield reliability results with a sufficient accuracy. The point method and the without origin method are much more efficient than the root method, especially for the reliability problems involving a large number of random variables or requiring complex finite element analysis. The without origin method can also produce sufficiently accurate reliability results in comparison with the point and root methods. Therefore, the origin often used as a collocation point is not absolutely necessary. The odd order SRSMs with the point method and the without origin method are recommended for the reliability analysis due to their computational accuracy and efficiency. The order of SRSM has a significant influence on the results associated with the three collocation point methods. For normal random variables, the SRSM with an order equaling or exceeding the order of a performance function can produce reliability results with a sufficient accuracy. The order of SRSM should significantly exceed the order of the performance function involving strongly non-normal random variables.

An Analysis of location of Needle Entry Point and Palpated PSIS in S1 Nerve Root Block

  • Kim, Shin-Hyung;Yoon, Kyung-Bong;Yoon, Duck-Mi;Choi, Seong-Ah;Kim, Eun-Mi
    • The Korean Journal of Pain
    • /
    • v.23 no.4
    • /
    • pp.242-246
    • /
    • 2010
  • Background: The first sacral nerve root block (S1NRB) is a common procedure in pain clinic for patients complaining of low back pain with radiating pain. It can be performed in the office based setting without C-arm. The previously suggested method of locating the needle entry point begins with identifying the posterior superior iliac spine (PSIS). Then a line is drawn between two points, one of which is 1.5 cm medical to the PSIS, and the other of which is 1.5 cm lateral and cephalad to the ipsilateral cornu. After that, one point on the line, which is 1.5 cm cephalad to the level of the PSIS, is considered as the needle entry point. The purpose of this study was to analyze the location of needle entry point and palpated PSIS in S1NRB. Methods: Fifty patients undergoing C-arm guided S1NRB in the prone position were examined. The surface anatomical relationships between the palpated PSIS and the needle entry point were assessed. Results: The analysis revealed that the transverse and vertical distance between the needle entry point and PSIS were $28.7{\pm}8.8mm$ medially and $3.5{\pm}14.0mm$ caudally, respectively. The transverse distance was $27.8{\pm}8.3mm$ medially for male and $29.5{\pm}9.3mm$ medially for female. The vertical distance was $1.0{\pm}14.1mm$ cranially for male and $8.1{\pm}12.7mm$ caudally for female. Conclusions: The needle entry point in S1NRB is located on the same line or in the caudal direction from the PSIS in a considerable number of cases. Therefore previous recommended methods cannot be applied to many cases.

SQUARE QUADRATIC PROXIMAL METHOD FOR NONLINEAR COMPLIMENTARITY PROBLEMS

  • Bnouhachem, Abdellah;Ou-yassine, Ali
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.671-684
    • /
    • 2019
  • In this paper, we propose a new interior point method for solving nonlinear complementarity problems. In this method, we use a new profitable searching direction and instead of using the logarithmic quadratic term, we use a square root quadratic term. We prove the global convergence of the proposed method under the assumption that F is monotone. Some preliminary computational results are given to illustrate the efficiency of the proposed method.

Unilateral maxillary central incisor root resorption after orthodontic treatment for Angle Class II, division 1 malocclusion with significant maxillary midline deviation: A possible correlation with root proximity to the incisive canal

  • Imamura, Toshihiro;Uesugi, Shunsuke;Ono, Takashi
    • The korean journal of orthodontics
    • /
    • v.50 no.3
    • /
    • pp.216-226
    • /
    • 2020
  • Root resorption can be caused by several factors, including contact with the cortical bone. Here we report a case involving a 21-year-old female with Angle Class II, division 1 malocclusion who exhibited significant root resorption in the maxillary right central incisor after orthodontic treatment. The patient presented with significant left-sided deviation of the maxillary incisors due to lingual dislocation of the left lateral incisor and a Class II molar relationship. Cephalometric analysis demonstrated a Class I skeletal relationship (A point-nasion-B point, 2.5°) and proclined maxillary anterior teeth (upper incisor to sella-nasion plane angle, 113.4°). The primary treatment objectives were the achievement of stable occlusion with midline agreement between the maxillary and mandibular dentitions and appropriate maxillary anterior tooth axes and molar relationship. A panoramic radiograph obtained after active treatment showed significant root resorption in the maxillary right central incisor; therefore, we performed cone-beam computed tomography, which confirmed root resorption along the cortical bone around the incisive canal. The findings from this case, where different degrees of root resorption were observed despite comparable degrees of orthodontic movement in the bilateral maxillary central incisors, suggest that the incisive canal could be an inducing factor for root resorption. However, further investigation is necessary to confirm this assumption.

A Design and Fabrication of the High-Speed Division/square-Root using a Redundant Floating Point Binary Number (고속 여분 부동 소수점 이진수의 제산/스퀘어-루트 설계 및 제작)

  • 김종섭;이종화;조상복
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.365-368
    • /
    • 2001
  • This paper described a design and implementation of the division/square-root for a redundant floating point binary number using high-speed quotient selector. This division/square-root used the method of a redundant binary addition with 25MHz clock speed. The addition of two numbers can be performed in a constant time independent of the word length since carry propagation can be eliminated. We have developed a 16-bit VLSI circuit for division and square-root operations used extensively in each iterative step. It peformed the division and square-root by a redundant binary addition to the shifted binary number every 16 cycles. Also the circuit uses the nonrestoring method to obtain a quotient. The quotient selection logic used a leading three digits of partial remainders in order to be implemented in a simple circuit. As a result, the performance of the proposed scheme is further enhanced in the speed of operation process by applying new quotient selection addition logic which can be parallelly process the quotient decision field. It showed the speed-up of 13% faster than previously presented schemes used the same algorithms.

  • PDF

Crown-root angulations of the maxillary anterior teeth according to malocclusions: A cone-beam computed tomography study in Korean population

  • Lee, Kyoung-Hoon;Choi, Dong-Soon;Jang, Insan;Cha, Bong-Kuen
    • The korean journal of orthodontics
    • /
    • v.52 no.6
    • /
    • pp.432-438
    • /
    • 2022
  • Objective: To compare crown-root angulations of the permanent maxillary anterior teeth in skeletal Class I, Class II, and Class III Korean malocclusion patients using cone-bean computed tomography (CBCT) images. Methods: Sixty CBCT images were collected from orthodontic patients archive based on skeletal Class I (0˚< A point-nasion-B point angle [ANB] < 4˚), Class II (ANB ≥ 4˚), and Class III (ANB ≤ 0˚) to have 20 samples in each group. Mesiodistal crown-root angulation (MDCRA) and labiolingual crown-root angulation (LLCRA) were evaluated after orientation of images. Crown-root angulations were compared among Class I, Class II, and Class III groups and among the maxillary anterior teeth in each group. Results: LLCRAs of the maxillary central incisor and the lateral incisor were significantly lower in Class III group than those in Class I group. However, those of the canine showed no significant differences among groups. MDCRAs of the maxillary anterior teeth did not significantly differ among groups either. Conclusions: Our results suggest that skeletal Class III malocclusion might affect LLCRA of the maxillary incisors, especially the central incisor.

A PARAMETRIC BOUNDARY OF A PERIOD-2 COMPONENT IN THE DEGREE-3 BIFURCATION SET

  • Kim, Young Ik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.16 no.2
    • /
    • pp.43-57
    • /
    • 2003
  • The boundary of a typical period-2 component in the degree-3 bifurcation set is formulated by a parametrization of its image which is the unit circle under the multiplier map. Some properties on the geometry of the boundary are investigated including the root point, the cusp and the length as well as the area bounded by the boundary curve. The centroid of the area for the period-2 component was numerically found with high accuracy and compared with its center. An algorithm drawing the boundary curve with Mathematica codes is proposed and its implementation exhibits a good agreement with the analysis presented here.

  • PDF

참당귀 뿌리 배양에 있어서 root segmentation과 식물생장조절제가 뿌리 생장과 decursinol angelate 생산에 미치는 영향

  • Kim, Ji-Yeon;Jo, Ji-Suk;Jo, Jong-Mun;Lee, Yong-Il;Kim, Ik-Hwan;Kim, Dong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.305-308
    • /
    • 2002
  • Decursinol angelate, a new anticancer agent, was produced by root cultures of Angelica gigas Nakai. In addition, difference of specific yields between primary and secondary root was investigated. It was found that specific yield of secondary root was much higher than that of primary root at various conditions, so that it was thought that the formation and growth of secondary root were feasible. From this point of view, effects of root segmentation and plant growth regulators (NAA, IBA) on root morphology and decursinol angelate production were examined. Root segmentation increased secondary root mass and product formation. On the other hand, addition of NAA or IBA at various concentrations promoted secondary root formation and production of decursinol angelate significantly. Five-fold increase of production was obtained at 4 mg/L of IBA compared to control without NAA and IBA.

  • PDF