• Title/Summary/Keyword: root nodulation

Search Result 47, Processing Time 0.025 seconds

Responses of Mungbean Varieties to Rhizobium Inoculation in respect of Nodulation, Nitrogenase Activity, Dry Matter Yield, and Nitrogen Uptake

  • A.R.M. Solaiman;M.M. Haque
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.5
    • /
    • pp.355-360
    • /
    • 2003
  • The responses of six mungbean [Vigna radiata (L.) Wilczek] varieties to Rhizobium inoculation on number and dry weight of nodules, nitrogenase activity of root nodule bacteria, dry weight of shoot and root, nitrogen content, and uptake by shoot were investigated. The mungbean varieties were BARI Mung-2, BARI Mung-3, BARI Mung-4, BARI Mung-5, BINA Moog-2, and BU Mung-1. Two-third seeds of each variety were inoculated with Rhizobium inoculant and the remaining one-third seeds were kept uninoculated. Rhizobium strains TAL 169 and TAL 441 were used for inoculation of seeds. Inoculation of seeds with Rhizobium strains significantly increased nodulation, nitrogenases activity, dry matter production, nitrogen content, and uptake by shoot of the crop compared to uninoculated control. There was positive correlation among the number and dry weight of nodules, nitrogenase activity, dry weight of shoot and root, nitrogen content, and uptake by shoot of the crop. It was concluded that BARI Mung-4 in association with Rhizobium strain TAL 169 performed best in recording nodulation, nitrogenase activity, dry matter production, and nitrogen uptake by shoot of mungbean.

Nodulation and Early Growth of Supernodulating Mutants in Soybean (초다 근류착생 돌연변이체 콩의 뿌리혹 형성 및 초기생육)

  • 이석하;이홍석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.1
    • /
    • pp.16-21
    • /
    • 1992
  • Increase in nodulation and nitrogen fixation was achieved partly through the isolation of supernodulating soybean mutant plants. This experiment was conducted to compare nodulation, nitrogen fixation, and early growth characters of wild type 'Bragg' with those of its supernodulating soybean mutant, 'nts 382' and 'nts 246'. At 31 days after planting, nodule dry weight of nts mutants was 2.5 to 3.7 times greater than that of Bragg. Higher nodulation of nts mutants showed the reduced top growth, indicating that photosynthates might be translocated and used for nodule growth attached to the root system. Total acetylene reduction activity was higher in nts mutants than Bragg, whereas specific acetylene reduction activity of nts mutant was the half of that of Bragg. Mixture of nts mutants and Bragg did not affect nodulation characters each other, suggesting that factors affecting supernodulating characters exist inside rather than outside the root system.

  • PDF

Introduction, Development, and Characterization of Supernodulating Soybean Mutant -Shoot Factor Regulation of Nodule Development in Supernodulating Soybean Mutant-

  • Lee, Hong-Suk;Kim, Yong-Wook;Park, Eui-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.1
    • /
    • pp.28-31
    • /
    • 1998
  • Nodule development was regulated partially by host plant factors originating in the shoots and roots. This study was performed to identify the origin of the factors regulating nodulation in supernodulating soybean (Glycine max [L.] Merr.) mutant 'SS2-2' which was isolated recently from ethyl methanesulfonate (EMS) mutagenesis of 'Sinpaldalkong 2'. Self- and reciprocal-grafts were made among three soybean genotypes which consisted of two supernodulating mutants, SS2-2 and 'nts 382', and a normal nodulating Sinpaldalkong 2. Self-grafted supernodulating mutants were characterized by greater nodule number, nodule dry weight, and $C_2$H$_2$ reduction activity than self-grafted wild types. They were also characterized by relatively higher nodule to root dry weight. Significant shoot genotypic effects were observed on nodule number, nodule dry weight, and $C_2\;H_2$ reduction activity per plant, whereas varying root genotypes had no effects. From this result, it is surmised that supernodulating characters are controlled by a graft-transmissible shoot factor, and mutant SS2-2 may have similar nodulation mechanism to the former supernodulating nts 382. In all grafts, both supernodulating mutants and Sinpaldalkong 2 maintained the similar balance between above ground and below ground parts regardless of significant differences in partitioning of dry matter into root and nodule between supernodulating mutants and Sinpaldalkong 2.

  • PDF

Genetic Mapping of Hypernodulation in Soybean Mutant SS2-2

  • Lee, Suk-Ha;Ha, Bo-Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.5
    • /
    • pp.416-419
    • /
    • 2001
  • Hypernodulation soybean mutant, SS2-2, is characterized with greater nodulation and nitrogen fixing ability in the root nodule than its wild type, Shinpaldalkong 2. The present study was performed to identify a genetic locus conferring hypernodulation in soybean mutant SS2-2 and to determine whether the gene controlling the hypernodulation of SS2-2 is allelic to that controlling the supernodulation of nts382 mutant. Hybridization studies between SS2-2 and Taekwangkong revealed that the recessive gene was responsible for the hypernodulation character in soybean mutant SS2-2. Allelism was also tested by crossing supernodulating mutant nts382 and hypernodulating mutant SS2-2 that both hypernodulation and supernodulation genes were likely controlled by an identical locus. Molecular marker mapping of hypernodulation gene in SS2-2 using SSR markers confirmed that the gene conferring hypernodulation was located at the same loci with the gene conferring supernodulation. It is interesting to note that the same gene controlled the super- and hyper-nodulation characters, although SS2-2 and nts 382 exhibited differences in the amount of nodulation in the root system. Further genetic studies should be needed to clarify the genetic regulation of super- and hyper-nodulation in soybean.

  • PDF

Long-Distance Control of Nodulation: Molecules and Models

  • Magori, Shimpei;Kawaguchi, Masayoshi
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.129-134
    • /
    • 2009
  • Legume plants develop root nodules to recruit nitrogen-fixing bacteria called rhizobia. This symbiotic relationship allows the host plants to grow even under nitrogen limiting environment. Since nodule development is an energetically expensive process, the number of nodules should be tightly controlled by the host plants. For this purpose, legume plants utilize a long-distance signaling known as autoregulation of nodulation (AON). AON signaling in legumes has been extensively studied over decades but the underlying molecular mechanism had been largely unclear until recently. With the advent of the model legumes, L. japonicus and M. truncatula, we have been seeing a great progress including isolation of the AON-associated receptor kinase. Here, we summarize recent studies on AON and discuss an updated view of the long-distance control of nodulation.

Nodule Phenology and Nitrogen Mineralization of Rhizosphere in Autumn-olive(Elaeagnus umbellata) Stand (보리수나무 군락의 근류계절학 및 근계의 질소무기화)

  • You, Young-Han;Kyung-Bum Kim;Chung-Sun An;Joon-Ho Kim;Seung-Dal Song
    • The Korean Journal of Ecology
    • /
    • v.18 no.4
    • /
    • pp.493-502
    • /
    • 1995
  • Nodulation phenology in relation to plant phenology, vertical distribution of nodul and root biomass in different soil, correlation between nodule and root size, and nitrogen mineralization around the rhizosphere by ion-exchange resin bag buried at 10 cm of soil were studied in Elaeagnus nmbellata (autumn-olive) stand, Korea. Nodulation appeared from spring to autumn and nodule phenology was coincided with the timing of root activity rather than that of foliation. Nodul size increased in proportion to the root size. In the sand dune with the lower root biomass, nodule appeared up to 80 cm deep in soil and the nodule biomass was 1,070 kg/ha, which was the highest value reported for several actinorhizal plants in the temperate regions. It is suggested that nodule distribution and production are mainly influenced by soil aeration among environmental factors. The higher ammonification or lower nitrification rate contrasted markedly with the earlier studies that reported lower ammonification or higher nitrification in actinorhizal plant soil. Nitrogen mineralization rate around the rhizosphere with root and nodule was characterized by higher nitrification rate than that in the control soil without root and nodule.

  • PDF

Inhibition of SKTI Synthesis in Agrobacterium rhizogenes-induced Hairy Root Reduces the Number of Nodule in Soybean (Kunitz Trypsin Inhibitor 발현 억제에 의한 콩 뿌리혹 수의 감소)

  • Kim, Sun-Hyung;Lim, Chae-Woo;Park, Ji-Young;Hwang, Cheol-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.3
    • /
    • pp.299-306
    • /
    • 2009
  • In nitrogen-limited conditions, rhizobia lead to formation of nitrogen-fixing nodules on the roots of leguminous plants. The process of nodulation is autoregulated by pre-existing nodules in the same root system. The altered profile of sap proteins by inoculation with B. japonicum may indicate presence of a signal responsible for autoregulation transferred through stem. The 20 kDa protein enhanced by innoculation significantly decreased in intensity from 2.5 to 7 days after inoculation (DAI). However 6 kDa protein did increase during such a transition period. Western blot analysis showed that both 20 kDa and 6 kDa were cross-reacted with the SKTI antiserum. This suggests that SKTI may be involved in soybean nodulation by specific induction and degradation in stem sap during early stage of nodulation. RNAi technique and Agrobacterium rhizogenes-mediated transformation were applied to investigate the function of SKTI in nodulation. We have found that the number of rhizobium-induced nodule was much less in SKTIi-silenced hairy roots than the non-silenced. Indeed the quantitative RT-PCR showed that the expression level of SKTI gene was reduced over 40% in the transgenic hairy roots compared to the non-transgenic. It appears that the observed early induction of SKTI and degradation into small peptide in a specific time manner may be involved in autoregulation of nodulation in soybean and the specific mechanism of such regulation remains to be investigated.

An Improved Method for Nodulation Test in Test Tube (시험관내 뿌리혹 생성 실험의 개선된 방법)

  • 고상균
    • Korean Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.169-172
    • /
    • 1999
  • Small-seeded legumes can be cultured enclosed in slant agar tubes if dlese plants are to he used for authenicaiing rhizobia or for enumerating 1-hizobia by the plant-inlection technique. An improved method has been developed with substiluting agar slant lor Korean paper(Har7ji). This method was panicularly useful for legumes with rigid radicle such as Cn.xsin 1mnmame. With this method Bmr!,~li1rzobin,17 sp. stram CN9135 on C nonmne induced root nodules biginning at day 7 of the nodulation period in 6% of the l ~ l a ~ l s , and all of ihe plants nodulated 14 days after inoculation by strain CN9135.

  • PDF

Effects of Rhizobium Inoculant, Compost, and Nitrogen on Nodulation, Growth, and Yield of Pea

  • Solaiman, A.R.M.;Rabbani, M.G.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.534-538
    • /
    • 2006
  • The effects of Rhizobium inoculant, compost, and nitrogen on nodulation, growth, dry matter production, yield attributes, and yield of pea (Pisum sativum) var, IPSA Motorshuti-3 were assessed by a field experiment. Among the treatments Rhizobium inoculant alone performed best in recording number and dry weight of nodules/plant. The highest green seed yield of 8.38 ton/ha (36.9% increase over control) and mature seed yield of 2.97 ton/ha (73.7% increase over control) were obtained by the application of 90 kg N/ha. The effects of 60 kg N/ha, Rhizobium inoculant alone and Rhizobium inoculant along with 5 ton compost/ha were same as the effect of 90 kg N/ha in recording plant height, root length, dry weight of shoot, and root both at preflowering and pod filling stages, number of mature pods/plant, number of mature seeds/pod, 1000-seed weight, green, and mature seed yields of pea.

Effects of Seed Inoculation Methods on the Nodulation and the Growth of Alfalfa Seeding (근류균의 종자 접종방안의 차이가 근류형성 및 Alfalfa 유묘의 생장에 미치는 영향)

  • 이광회;이호진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.2
    • /
    • pp.192-197
    • /
    • 1981
  • Alfalfa (Medicago sativa L. cv. Luna) seeded in agar was inoculated with two strains of Rhizobium meliloti isolated from root nodules of alfalfa for assessment of nodulation. The seedling growth after six weeks was remarkably increased by adding each rhizobia strains into agar media and also by nitrate application (70ug N/ml), but there was no significant difference among them. Nodulations started one week after inoculation and increased its numbers and sizes as seedling grew. Therefore, the two strains isolated from alfalfa root were concluded to be effective strains. For determining seed inoculation method the same cultivar was inoculated with both rhizobia strains using different inoculation methods such as broth-vacuum, peat-adhesive, peat & lime pelleting. They were seeded in pots of river sand and supplied with culture solution excluded nitrogen. The peat & lime pelleting was recognized the best method in both of nodulation and seedling growth after eight weeks growth. There were significant correlations between the weight of nodules and the shoot or root dry weight of alfalfa in both rhizobia strains.

  • PDF