• Title/Summary/Keyword: root length

Search Result 1,723, Processing Time 0.026 seconds

A survey on working length determination of endodontic treatment (근관치료의 근관장 측정에 관한 연구: 근관치료학 전공 교수 설문)

  • Ahn, Hye-ra;Seo, Min-Seock
    • The Journal of the Korean dental association
    • /
    • v.55 no.1
    • /
    • pp.42-52
    • /
    • 2017
  • The purpose of this study is to evaluate the preferred method of root canal length determination and the apical limit for canal instrumentation among endodontic teachers of dental school. A questionnaire on the preferred method of root canal length determination and the apical limit for canal instrumentation was designed and distributed to endodontic teachers of various dental schools. The response rate was 90%. The most preferred method of root canal length determination was Electronic apex locator (EAL)(89%). The most favoured apical limit for canal instrumentation was 0.5 to 1.0 mm short of the radiographic apex(78%). The most preferred method of using EAL was that the working length is taken at 'APEX' mark and then distracted 0.5mm from that length.(41%). When there is no agreement between radiographic measurement and EAL measurement, 74% of respondents chose the length of EAL measurement. The majority of endodontic teachers from Korean dental schools preferred EAL to radiograph method in determining root canal length.

  • PDF

A Study on the Accuracy of the Electronic Apex Locator Using a Micro-Computed Tomography (미세단층촬영기(Micro-CT)를 이용한 전자 근관장 측정기의 정확성에 관한 연구)

  • Chun, Keyoung-Jin;Kim, Yang-Soo;Nam, Tae-Kye
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.116-121
    • /
    • 2007
  • The length of root canal has to be measured for endodontic treatment. Several electronic apex locators were developed to measure the length of root canal by other researchers. And their accuracies were verified by X-ray or micrometer method. But these methods did not consider the non-linear bends of pulp and had ${\pm}0.5mm$ error which was large enough to measure the length of root canal. The purpose of this study is the introduction of a new method to measure the length of root canal and the verification of the accuracy of an electronic apex locator using a Micro-CT. The length of root canal of 6 teeth were measured with the electronic apex locator. When the electronic apex locator reads 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 mm length of the file which was inserted in the hole of the tooth to measure the length of root canal. The average (${\pm}$Standard deviation) length of root canal of 6 teeth measured by the Micro-CT was $0.49{\pm}0.03,\;0.59{\pm}0.04,\;0.68{\pm}0.03,\;0.78{\pm}0.03,\;0.90{\pm}0.04\;and\;1.01{\pm}0.03mm$, respectively. The maximum error of the electronic apex locator was 0.06 mm.

A Study on the accuracy of the elecronic apex locator using a micro-computed tomography (미세단층촬영기(Micro-CT)를 이용한 전자 근관장 측정기의 정확성에 관한 연구)

  • Chun K.J.;Kim Y.S.;Lee H.J.;Nam T.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.647-648
    • /
    • 2006
  • The length of root canal has to be measured to cure root canal. Several apex locators were developed to measure the length of root canal. And they were verified by X-ray or micrometer method. But these methods do not consider the non-linear bends of pulp and have ${\pm}0.5mm$ error which is large to measure the length of root canal. The purpose of this study is the research of new method to measure the length of root canal and verifying the apex locator using Micro-CT. The length of root canal of 6 teeth were measured with the apex locator. When the apex locator reads 0.5, 0.6, 0.7, 0.5, 0.9, 1.0mm, the teeth with the file fixed were photographed. The average lengths of root canal of 6 teeth measured by Micro-CT were 0.488, 0.589, 0.680, 0.775, 0.897, 0.992mm.

  • PDF

A STUDY OF DETERMINATION OF PHYSIOLOGICAL ROOT APEX BY ELECTRICAL RESISTANCE VALUE (전기저항치에 의한 생리적 근첨(根尖)의 측정에 관한 연구)

  • Yun, Ki-Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 1981
  • One of the most important factors for successful endodontic therapy is an accurate length determination of physiological root apex. Some methods suggested for the measurement of root canal length, include digital-tactile sense and roentgenographic technique with measuring wire, scale and grid. But these methods do not derermine an accurate working length to physiological root apex. Recently electronic measuring devices are used to locate the physiological root apex in root canal length determination and these devices are accepted as an effective apparatus. The 89 patients (116 teeth, 144 canals) among the out-patients of Yonsei University Dental Infirmary, who had had an endodontic treatment in the Department of Operative Dentistry, were measured by the Root-Canal Meter$^{(R)}$ as an electronic device, and radiographs to determine the distribution and location of physiological root apex, then the following results were made: (1) Range of ${\pm}$1mm from the radiographic root apex were present in 88.88% (128 canals) of the subjects. (2) Physiological root apex and radiographic root apex were coincided in 31.94% (46 canals) of the subjects. (3) The actual length of the physiological root apex of the teeth were as follow; A : in the maxillary central incisor : 0.46mm B : in the maxillary lateral incisor : 0.44mm C : in the maxillary canine : 0.44mm D : in the maxillary 1st premolar : a) Buccal : 0.59mm b) Lingual : 0.34mm E : in the maxillary 2nd premolar : 0.54mm F : in the maxillary 1st molar : a) Mesio-buccal : 0.50mm b) Disto-buccal : 0.42mm c) Lingual : 0.56mm G : in the mandibular central incisor : 0.62mm H : in the mandibular lateral incisor : 0.45mm in the mandibular canine : 0.54mm J : in the mandibular 1st premolar : 0.47mm K : in the mandibular 2nd premolar : 0.34mm L : in the mandibular 1st molar : a) Mesio-buccal : 0.54mm b) Mesio-lingual : 0.31mm c) Distal : 0.37mm.

  • PDF

AN IN VITRO EVALUATION OF THE ACCURACY OF ROOT ZX ELECTRONIC APEX LOCATOR (전자근관장측정기 Root ZX의 정확도에 관한 실험적 연구)

  • Kang, Dae-Hoon;Chung, Kwang-Hee;Yoon, Soo-Han;Bae, Kwang-Shik
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.339-345
    • /
    • 1998
  • The purpose of this study was to evaluate the in vitro accuracy of Root ZX(Morita Co., Japan) which is the ratio type electronic apex locator. The 86 extracted human palatal roots of maxillary molar with fully formed apices were used. File lengths with the file tip just visible at the foramen were compared to those measured with Root ZX. For length measuring with Root ZX, saline test model with which the apical 1/3 of each root was submerged into normal saline were designed. The root canal lengths were determined with Root ZX and the radiographs were taken with a file in the canal. The distances from file tips of Root ZX lengths to apecies in radiographs also were measured with Profile projector PJ311(Mitutoyo Co., Japan). The results were as follows : 1. The root canal length determined with electronic apex locator was $0.78{\pm}0.53mm$ shorter than the length with visual measurement. 2. The file tip of Root ZX lengths was located at $0.85{\pm}0.49mm$ away from the apex in radiograph. 3. The accuracy of the Root ZX was 79.1% within 0.5mm of visual working length and 96.5% within 1.0mm.

  • PDF

Effect of Light Intensity and Temperature on the Growth and Root Yield of Panax ginseng (광도와 온도가 인삼의 생육 및 수량에 미치는 영향)

  • 이종화
    • Journal of Ginseng Research
    • /
    • v.12 no.1
    • /
    • pp.40-46
    • /
    • 1988
  • This study was conducted to investigate the optimum temperature and light intensity of photosynthesis and transmittance in the shade for better growth and root yield of ginseng. The 3-year-old ginseng plants grown under the shade of 5, 10 and 20% transmittance did not show any significant difference in the stem length, stem diameter, leaf area and root length. The root diameter markedly increased under the shade of 10% and 20% transmittance, and the root was the heaviest under the shade of 20% transmittance. The 6-year-old ginseng plants grown at 20% transmittance showed the largest root diameter but the root length was not influenced by transmittance. The root was heaviest in the shade of 20% transmittance.

  • PDF

Comparative Analysis of Root and Shoot Growth between Tongil and Japonica Type Rice

  • Kang, Si-Yong;Shigenori Morita
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.3
    • /
    • pp.161-167
    • /
    • 1998
  • Root and shoot development of two rice (Oryza sativa L.) cultivars with different genetic backgrounds was studied with reference to their relative growth. Tongil type (indica-japonica hybrid) cultivar 'Kuemkangbyeo' and japonica cultivar 'Koshihikari' were grown in $5000^{-1}$ a Wagnar pots under flooded condition. Three plants with roots of both cultivars were taken in every phyllochron through the heading stage to record morphological characteristics of shoot and root system. Compared to Koshihikari, Kuemkangbyeo produced more tillers and had greater shoot weight and leaf area per hill. Length and weight of the root system in both cultivars increased exponentially with time. At the same time, root system development was significantly faster in Kuemkangbyeo than in Koshihikari after the panicle initiation stage. As a result, Kuemkangbyeo has a vigorous root system which consists of larger number of nodal roots compared to Koshihikari. Also, the root length and weight per unit leaf area of Kuemkangbyeo were larger than those of Koshihikari in the later half of growing period, which suggests possible higher physiological activity of the root system of Kuemkangbyeo which is known as a high-yielding cultivar. The relationship between root traits (crown root number, total root length, and root dry weight) and shoot traits (leaf area and leaf+culm dry weight) in both cultivars closely showed allometry until the flag leaf stage.

  • PDF

Morphological Difference of Rice Seedling Grown under Different Dissolved Oxygen Conditions

  • Won Jong Gun;Choi Jang Soo;Ahn Deck Jong;Lee Seung Phil;Lee Sang Chul;Yoshida Tomohiko
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.284-288
    • /
    • 2004
  • The response of dissolved oxygen (DO) concentrations caused significant change in root number, root length, coleoptile length, shoot length and leaf age of seedlings. The genotypic difference in the effect of DO also highly significant (P<0.01) for all of the seedling traits. The number and length of root were extremely inhibited at the condition of $0.39\pm0.09$ DO concentration. While the coleoptile elongated markedly in the lowest DO concentrations, the shoot did not develop. The root growth was improved slightly at the $1.39\pm0.27mg L^{-1}$, however, there were no difference among genotypes at these two low DO concentrations. As the DO concentration become higher, the growth of root and shoot was improved remarkably. Root number, root length and shoot length was significantly different between $20\;and\;30^{\circ}C$ in DO rich and normal conditions, the development of those traits were apparently accelerated in high water temperature, however those traits of seedlings in DO deficiency were not different between the two temperatures except for shoot length. On the other hand the coleoptile length was not affected by the stagnant water temperature; it was stimulated by the low DO concentration. The competition of DO was greater as the seedling density was increased in the stagnant water, therefore the seedlings grown under high density have long and white coleoptiles, and the growth of roots and shoots was retarded severely.

Correlations among Morphological Characteristics of Panax quinquefolium Plants Grown .in British Columbia, Canada (Canada산 인삼의 형태 특성)

  • Smyth, S.R.;Bailey, W.G.;Skretkowiez, A.L.
    • Journal of Ginseng Research
    • /
    • v.12 no.2
    • /
    • pp.145-152
    • /
    • 1988
  • Correlations between various morphological characteristics of Panax quinquefolium plants grown in Lytton, British Columbia, Canada were assessed for 1-through 4-year old plants. Root dry weight, the dependent variable, was found to be strongly related to leaf dry weight, leaf length and root length for 1-and 2-year old plants during the middle of the growing season. For 1- and 2-year old plants at the end of the growing season, root dry weight was found to be related to leaf dry weight, leaf length and stem dry weight. For 3 and 4-year old plants, root dry weight was found to be related to leaf dry weight, leaf length and stem dry weight. For 3- and 4-year old plants, root dry weight was found to be related to leaf dry weight. For practical considerations, this latter relationship provides a simple method for selecting superior plants from which seed can be harvested.

  • PDF

Machine Vision Technique for Rapid Measurement of Soybean Seed Vigor

  • Lee, Hoonsoo;Huy, Tran Quoc;Park, Eunsoo;Bae, Hyung-Jin;Baek, Insuck;Kim, Moon S.;Mo, Changyeun;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.227-233
    • /
    • 2017
  • Purpose: Morphological properties of soybean roots are important indicators of the vigor of the seed, which determines the survival rate of the seedlings grown. The current vigor test for soybean seeds is manual measurement with the human eye. This study describes an application of a machine vision technique for rapid measurement of soybean seed vigor to replace the time-consuming and labor-intensive conventional method. Methods: A CCD camera was used to obtain color images of seeds during germination. Image processing techniques were used to obtain root segmentation. The various morphological parameters, such as primary root length, total root length, total surface area, average diameter, and branching points of roots were calculated from a root skeleton image using a customized pixel-based image processing algorithm. Results: The measurement accuracy of the machine vision system ranged from 92.6% to 98.8%, with accuracies of 96.2% for primary root length and 96.4% for total root length, compared to manual measurement. The correlation coefficient for each measurement was 0.999 with a standard error of prediction of 1.16 mm for primary root length and 0.97 mm for total root length. Conclusions: The developed machine vision system showed good performance for the morphological measurement of soybean roots. This image analysis algorithm, combined with a simple color camera, can be used as an alternative to the conventional seed vigor test method.