• Title/Summary/Keyword: root gall soil moisture

Search Result 2, Processing Time 0.02 seconds

Effects of Temperature, Soil Moisture, Soil pH and Light on Root Gall Development of Chinese Cabbage by Plasmodiophora brassicae (배추무사마귀병 뿌리혹의 형성에 미치는 온도, 토양수분, 토양 pH, 광의 영향)

  • 김충회
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.84-89
    • /
    • 1999
  • Development of root galls of clubroot disease on Chinese cabbage seedlings was first observed 17days after inoculation of Plasmodiophora brassicae at $25^{\circ}C$ 4-11days earlier than at 5, 20, 3$0^{\circ}C$ and 35$^{\circ}C$. Subsequent enlargement of root galls was also fastest at $25^{\circ}C$ and 2$0^{\circ}C$ but delayed at 15$^{\circ}C$ and 3$0^{\circ}C$ or above. Chinese cabbage seedlings with root gall formation showed reduction in number of leaves above ground fresh weight and amount of root hairs but increase in root weight, Root galls development was highest at soil moisture level of 80% of maximum soil moisture capacity than at 60% and 100%. Optimum soil pH for root gall development was pH 6 although root galls were formed at a range of pH 5 to 8. Period of light illumination also affected root gall development with the greatest gall development at 12hr/12hr in light/dark period and the least at 8hr/16hr. Site of root gall formation and gall shape did not differ greatly among treatments of temperature soil moisture pH and light experiments.

  • PDF

Some Environmental factors Affecting Decay of Root Galls in Club Root Disease of Chinese Cabbage (배추무사마귀병 뿌리혹의 부패에 미치는 몇가지 환경요인)

  • Kim, Choong-Hoe;Cho, Won-Dae;Kim, Hong-Mo
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.4
    • /
    • pp.61-65
    • /
    • 2000
  • Effects of temperature, soil moisture level, flooding, and soil microflora on decay of root galls in club root disease of Chinese cabbage were examined in the laboratory. Number of days required for complete decay of root galls was 3 days at $32^{\circ}C$ or higher, 12 days at $16{\sim}20^{\circ}C$ and 28 days at $8^{\circ}C$. As soil moisture content goes up, root gall decay became faster resulting 3 days for complete decay under saturated moisture condition at high temperature of $32^{\circ}C$, and 8 days under the same moisture level at $24^{\circ}C$. Soil moisture effect was relatively low at $24^{\circ}C$ compared to $32^{\circ}C$. Stimulation of decay by soil flooding was not observed at $32^{\circ}C$ but became apparent at $12^{\circ}C$. Influence of soil microflora on root gall decay was negligiable. Based on these results, temperature appears to be the most important factor affecting root gall decay in soil. Root gall decay is thought to be affected more easily by other environmental factors under low temperature conditions. Maturity of resting spores of Plasmodioprora brassicae in root galls tended to increase as time prolongs during root gall decay. Density of the resting spores was lower in fresh root galls where their maturity was also low as compared to completely decayed root galls. Number of resting spores in completely decayed root gall was $6.5{\times}10^{6}/g$ tissue and its maturity was over 95%.

  • PDF