• Title/Summary/Keyword: root development inhibition

Search Result 99, Processing Time 0.032 seconds

Development of Anti-Wrinkle Agent from Nelumbo nucifera Root Extract (연근 추출물에서 주름개선 소재의 개발)

  • Kim, Hee Jin;Kim, Tagon;Kang, Whan Yul;Baek, Hyun;Cheon, Hae Young;Kim, Bo Young;Kim, Donguk
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.413-416
    • /
    • 2010
  • In this research, root extracts of Nelumbo nucifera was tested to see the possibility for functional cosmetic agent. 70-100% ethanol was used as solvent and nuciferin was confirmed as active component. To test cosmetic effect of root extracts of Nelumbo nucifera, safety effect(MTT assay), anti-wrinkle effect(elastase inhibition assay) and antioxidation effect(DPPH free radical scavenging assay) were measured. When 100% ethanol was used as extracting solvent, cell viability was over 80% at $100{\mu}g/ml$, which indicated that root extract of Nelumbo nucifera was suitable for cosmetic agent. Root extract of Nelumbo nucifera showed 40~50% elastase inhibition at $100{\mu}g/ml$ so that it had good anti-wrinkle characteristics. 50% antioxidation capacity($FSC_{50}$) was $5.0{\sim}38{\mu}g/ml$ and root extract of Nelumbo nucifera showed excellent antioxidation effect. From the research, root extracts of Nelumbo nucifera showed strong possibility for anti-wrinkle functional cosmetic agent.

Efficacy of relieve premenstrual syndrome of Inula helenium L. root extract

  • Jeong, Yong Joon;Yun, Su Yeong;Lee, Da Eun;Kang, Se Chan
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.123-123
    • /
    • 2018
  • Premenstrual syndrome (PMS) is a common disorder affecting the emotional and physical health of women during certain periods of the menstrual cycle. Many researchers who have previously studied PMS have believed that PMS is associated with changes in sex hormones and serotonin levels at the beginning of the menstrual cycle. However, recent studies suggest that progesterone/estrogen imbalance and elevation of prolactin-induced by dopamine low-secretion play a crucial role in increasing PMS symptoms. Because of this, we have focused on mitigating PMS symptoms through the mechanism of prolactin secretion inhibition by dopamine receptor activation. The inhibition of prolactin secretion by 61-kinds of medicinal herb extracts was investigated in GH3 pituitary cells. Among them, Inula heleniun L. root extract (IHE) showed excellent prolactin secretion inhibitory effect. IHEs were prepared using 30, 50, and 70% ethanol. And the yield, cytotoxicity, dopamine receptor activity and inhibition of prolactin secretion of each extract were measured. Through a series of experiments, we found that prolactin secretion was significantly reduced (P<0.01) by the components present in IHE and that dopamine receptor regulation was possible (P<0.05). Considering yield and safety, we suggest the use of 30% ethanol IHE in the development of PMS symptom relief products.

  • PDF

SCFFBS1 Regulates Root Quiescent Center Cell Division via Protein Degradation of APC/CCCS52A2

  • Geem, Kyoung Rok;Kim, Hyemin;Ryu, Hojin
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.695-701
    • /
    • 2022
  • Homeostatic regulation of meristematic stem cells accomplished by maintaining a balance between stem cell self-renewal and differentiation is critical for proper plant growth and development. The quiescent center (QC) regulates root apical meristem homeostasis by maintaining stem cell fate during plant root development. Cell cycle checkpoints, such as anaphase promoting complex/cyclosome/cell cycle switch 52 A2 (APC/CCCS52A2), strictly control the low proliferation rate of QC cells. Although APC/CCCS52A2 plays a critical role in maintaining QC cell division, the molecular mechanism that regulates its activity remains largely unknown. Here, we identified SCFFBS1, a ubiquitin E3 ligase, as a key regulator of QC cell division through the direct proteolysis of CCS52A2. FBS1 activity is positively associated with QC cell division and CCS52A2 proteolysis. FBS1 overexpression or ccs52a2-1 knockout consistently resulted in abnormal root development, characterized by root growth inhibition and low mitotic activity in the meristematic zone. Loss-of-function mutation of FBS1, on the other hand, resulted in low QC cell division, extremely low WOX5 expression, and rapid root growth. The 26S proteasome-mediated degradation of CCS52A2 was facilitated by its direct interaction with FBS1. The FBS1 genetically interacted with APC/CCCS52A2-ERF115-PSKR1 signaling module for QC division. Thus, our findings establish SCFFBS1-mediated CCS52A2 proteolysis as the molecular mechanism for controlling QC cell division in plants.

Histological and Cytological Changes Associated with Susceptible and Resistant Responses of Chili Pepper Root and Stem to Phytophthora capsici Infection

  • Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • Microscopic study of chili pepper (Capsicum annuum L.) infected with Phytophthora capsici, causing Phytophthora blight of chili pepper, was conducted to compare histological and cytological characteristics in the root and stem of susceptible (C. annuum cv. Bugang) and resistant (C. annuum cv. CM334) pepper cultivars. The susceptible pepper roots and stems were extensively penetrated and invaded by the pathogen initially into epidermal cells and later cortical and vascular cells. Host cell walls adjacent to and invaded by the infecting hyphae were partially dissolved and structurally loosened with fine fibrillar materials probably by cell wall-degrading enzymes of the pathogen. In the resistant pepper, the pathogen remained on root epidermal surface at one day after inoculation, embedded and captured in root exudation materials composed of proteins and polysaccharides. Also the pathogen appeared to be blocked in its progression at the early infection stages by thickened middle lamellae. At 3 days after inoculation, the oomycete hyphae were still confined to epidermal cells of the root and at most outer peripheral cortical cells of the stem, resulting from their invasion blocked by wound periderms formed underneath the infection sites and/or cell wall appositions bounding the hyphal protrusions. All of these aspects suggest that limitation of disease development in the resistant pepper may be due to the inhibition of the pathogen penetration, infection, invasion, and colonization by the defense structures such as root exudation materials, thickened middle lamellae, wound peridems and cell wall appositions.

Evaluation of Fiber Content According to the Cultivation Period of New Sweetpotato Varieties

  • Won Park;Mi Nam Chung;Koan Sik Woo;Hyeong-Un Lee;Tae Hwa Kim;Su Jung Kim;Kyo Hwui Lee;Sang Sik Nam
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.54-54
    • /
    • 2022
  • Recently, as one of the major problems in the quality of sweetpotato, occurrence of thin and long fibrous tissues in storage root acts as a negative factor when consumers eat sweetpotato. In this study, the fiber content was compared according to the cultivation period in storage roots of 'Sodammi' and 'Hopungmi', which were newly bred and developed, and in that of 'Hogammi', which contains a lot of fibrous tissues. To isolate of fiber from storage root, the Association Official Analytical Chemists (AOAC) method was applied for quantifying fiber present in storage root of sweetpotato. The fiber contents isolated by this method is calculated by converting the weight of the storage root. The fiber content was measured every 20 days from 60 to 120 days after planting. As a result of this study, the lowest amount of fiber was 'Hopungmi' (70~140 mg/100 g), and the highest amount of fiber was observed in 'Hogammi' (115~223 mg/100 g). 'Sodammi' showed an intermediate level (104~149 mg/100 g) between the fiber content of 'Hopungmi' and 'Hogammi'. The fiber contents of 'Hopungmi' was 39% lower than that of 'Hogammi'. As the increased cultivation periods, the fiber contents showed a tendency to decrease. In the future research, the length, thickness, and fiber contents will be investigated to compare the degree of taste inhibition.

  • PDF

Molecular Mechanisms of Inhibitory Activities of Tanshinones on Lipopolysaccharide-Induced Nitric Oxide Generation in RAW 264.7 Cells

  • Choi, Hong-Seok;Cho, Dong-Im;Choi, Hoo-Kyun;Im, Suhn-Yong;Ryu, Shi-Yong;Kim , Kyeong-Man
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1233-1237
    • /
    • 2004
  • The effects of four tanshinones isolated from Tanshen (the root of Salvia miltiorrhiza Bunge, Labiatae) were tested for their inhibition of nitric oxide production in macrophage cells, and the underlying molecular mechanisms studied. Of the four tanshinones used, 15, 16-dihydrotanshinone- I, tanshinone-IIA and cryptotanshinone, but not tanshinone I, demonstrated significant inhibition of the LPS-induced nitric oxide production in RAW 264.7 cells, with calculated $IC_{50}$ values of 5, 8, and 1.5 ${\mu}M$ , respectively. Tanshinones exerted inhibitory activities on the LPS-induced nitric oxide production only when applied concurrently with LPS, and tanshinone- IIA and cryptotanshinone were found to inhibit LPS-induced NF-$_KB$ mobilization and extracellular- regulated kinase (ERK) activation, respectively. These results suggest that tanshinones inhibit LPS-induced nitric oxide generation by interfering with the initial stage of LPS-induced expression of certain genes. NF-$_KB$ and ERK could be the molecular targets for tanshinones for the inhibition of LPS-induced nitric oxide production in macrophage cells.

Isoprenylated flavonoids from the root bark of Morus alba L. and their inhibition effect on NO production in LPS-induced RAW 264.7 cells

  • Jung, Jae-Woo;Ko, Jung-Hwan;Ko, Won-Min;Park, Ji-Hae;Baek, Yun-Su;Kim, Youn-Chul;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.2
    • /
    • pp.109-111
    • /
    • 2017
  • The root bark of Morus alba L. were extracted with 80% aqueous MeOH, and the concentrated extract was partitioned with EtOAc, n-BuOH, and $H_2O$ fractions. The repeated silica gel ($SiO_2$), octadecyl $SiO_2$ (ODS), and Sephadex LH-20 column chromatographies of the EtOAc fraction led to isolation of 12 phenolic compounds. The chemical structures of the compounds were determined as sanggenol Q (1), sanggenol A (2), sanggenol L (3), kuwanon T (4), cyclomorusin (5), sanggenon F (6), sanggenol O (7), sanggenon N (8), sanggenon G (9), mulberrofuran G (10), mulberrofuran C (11), and moracin E (12). All isolated compounds were evaluated for inhibit lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages.

Variation of Decursin Contents of Root Ages in Floral Inhibition Cultured Angelica gigas Nakai (화성억제재배한 참당귀의 년근별 약효성분함량)

  • 조선행;신국현;김기준
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.4
    • /
    • pp.317-323
    • /
    • 1993
  • In order to clarify the contents of active principles in floral inhibition cultured Angelica gigas roots, the amounts of crude extract and the contents of decursin and decursinol angelate in the yearly roots were analyzed and compared with respect to the root age, root part and growth stage. The woody cell, weight and width of pith and cortex were also investigated at different growth stage to observe the developmental characteristics of lignification in the roots as bolting and flowering in normal cultured Angelica gigas. The amount of crude extracts did not differ with plant ages, whereas the contents of decursin and decursinol angelate were differed and the highest in 3 year old roots. The contents of decursin in 1, 2 and 3 year old roots were 3.71, 4.76 and 8.20% and those of decursinol angel ate were 2.84, 3.40 and 5.01%, respectively. The amount of crude extracts, and the contents of decursin and decursinol angelate were the highest in fine roots, followed by the lateral roots and the lowest in the primary roots. On the other hand, the amount of the constituents in the cortex were much higher than those in the pith of the root. The amounts of crude extract, and the contents of decursin and decursinol angelate showed the highest value at the vagetative stage and decreased with development to bolting and blooming stage. Woody cells were accumulated in the pith of the root as advancing growth stage, so that the weight and radius of the pith increased, whereas the relative weight and width of the cortex decreased slightly.

  • PDF

Basic Studies on Culture Practice of Gentiana scabra BUNGE (용담(龍膽) 재배기술(栽培技術) 개발(開發)을 위한 기초(基礎) 연구(硏究))

  • Lee, He-Duck;Choi, Byong-Jun;Han, Seong-Ho;Moon, Chang-Sick;Kim, Chang-Young
    • Korean Journal of Medicinal Crop Science
    • /
    • v.3 no.1
    • /
    • pp.5-8
    • /
    • 1995
  • This experiment was carried out to obtain the basic information on cultivation of Gentiana scabra BUNGE. Optimum temperature for germination, planting time effect of chemicals on rooting for cutting propagation, effect of cutting on root yield, and content of gentiopicroside were investigated. The germination ratio was highest at $25^{\circ}C$ but lower at $10,\;15,\;20\;,30^{\circ}C.$ The optimum planting time was March 20 the cutting in May and NAA treatment were effective on rooting for cutting propagation. Inhibition of flowering by cutting was effective for increasing root yield but not effective for gentiopicroside content of root.

  • PDF

Development of TPA-induced Ornithine Decarboxylase (ODC) Inhibitors from Plants as Cancer Chemopreventive Agents

  • Kim, Soo-Jeong;Lee, Ik-Soo;Chang, Il-Moo;Mar, Woong-Chon
    • Natural Product Sciences
    • /
    • v.2 no.2
    • /
    • pp.123-129
    • /
    • 1996
  • Chemical carcinogenesis is associated with the increase of intracellular polyamine levels, and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse epidermal ODC activity are essential to skin tumor promotion by TPA. Therefore, for the discovery of new cancer chemopreventive agents, we have evaluated about 73 kinds of natural products to study inhibitory effects against ODC activity induced by TPA in T24 cell culture system. The total methanol extracts of plants fractionated into three layers (hexane, ethyl acetate and water layer) were tested and the hexane fraction of Angelica gigas $(root\;bark,\;IC_{50}:\;7.4\;{\mu}g/ml)$ and the ethyl acetate fraction of Corydalis ternata $(root,\;IC_{50}:\;7.5\;{\mu}g/ml)$ were the most effective on the inhibition of TPA-induced ODC activity, These active fractions are under investigation with further sequential fractionation using column chromatography.

  • PDF